World Library  
Flag as Inappropriate
Email this Article

US Army Corps of Engineers

Article Id: WHEBN0001069639
Reproduction Date:

Title: US Army Corps of Engineers  
Author: World Heritage Encyclopedia
Language: English
Subject: Hydrology, Hanover, New Hampshire, San Francisco Bay, Chicago River, Niagara River, Baton Rouge, Louisiana, Letchworth State Park, Chatham County, North Carolina, Hartford City, Indiana, Dayton, Kentucky
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

US Army Corps of Engineers

U.S. Army Corps of Engineers
USACE Logo
Active 16 June 1775–present
Country United States United States
Allegiance United States Department of the Army Seal.svg United States Army
Branch Regular Army
Size 36,500 civilian and military (approx. 2%) members[1]
Garrison/HQ Washington, D.C.
Motto Essayons (Let Us Try)
Colors Scarlet and White[2]
Website
Commanders
Current
commander
Lieutenant General Thomas P. Bostick, Chief of Engineers
Notable
commanders
COL Richard Gridley,
COL Joseph Swift,
COL Alexander Macomb, Jr.,
BG William Louis Marshall,
MG Richard Delafield,
BG Joseph Totten,
BG Henry Robert,
LTG Edgar Jadwin,
LTG Leif J. Sverdrup



The United States Army Corps of Engineers (USACE, also sometimes shortened to CoE) is a U.S. federal agency under the Department of Defense and a major Army command made up of some 36,500 civilian and military personnel,[4] making it one of the world's largest public engineering, design, and construction management agency. Although generally associated with dams, canals and flood protection in the United States, USACE is involved in a wide range of public works throughout the world. The Corps of Engineers provides outdoor recreation opportunities to the public, and provides 24% of U.S. hydropower capacity.

The Corps' mission is "to provide vital public engineering services in peace and war to strengthen the nation's security, energize the economy, and reduce risks from disasters".[5]

Their most visible missions include:

The Corps' vision is "having a great engineering force of highly disciplined people working with partners through disciplined thought and action to deliver innovative and sustainable solutions to the nation's engineering challenges".[5]

History

Early history

The history of United States Army Corps of Engineers can be traced back to 16 June 1775, when the Continental Congress organized an army with a chief engineer and two assistants.[6] Colonel Richard Gridley became General George Washington's first chief engineer; however, it was not until 1779 that Congress created a separate Corps of Engineers. One of its first tasks was to build fortifications near Boston at Bunker Hill. The first Corps was mostly composed of French subjects, who had been hired by General Washington from the service of Louis XVI.

The Corps of Engineers as it is known today came into being on 16 March 1802, when President Thomas Jefferson was authorized to "organize and establish a Corps of Engineers ... that the said Corps ... shall be stationed at West Point in the State of New York and shall constitute a Military Academy." Until 1866, the superintendent of the United States Military Academy was always an engineer officer. During the first half of the 19th century, West Point was the major and, for a while, the only engineering school in the country.

The General Survey Act of 1824 authorized the use of Army engineers to survey road and canal routes.[7] That same year, Congress passed an "Act to Improve the Navigation of the Ohio and Mississippi Rivers" and "to remove sand bars on the Ohio and planers, sawyers, and snags on the Mississippi" for which the Corps' was the responsible agency.[8]

Formerly Separate Units

The U.S. Army Corps of Topographical Engineers, was separately authorized on 4 July 1838, consisted only of officers, and was used for mapping and the design and construction of federal civil works and other coastal fortifications and navigational routes. It was merged with the Corps of Engineers on 31 March 1863, at which point the Corps of Engineers also assumed the Lakes Survey District mission for the Great Lakes.[9]

In 1841, Congress created the Lake Survey. The Survey, based in Detroit, Mich., was charged with conducting a hydrographical survey of the Northern and Northwestern Lakes and preparing and publishing nautical charts and other navigation aids. The Lake Survey published its first charts in 1852.[10]

In the mid-19th century, Corps of Engineers' officers ran Lighthouse Districts in tandem with U.S. Naval officers.

Civil War

The Army Corps of Engineers played a significant role in the American Civil War. Many of the men who would serve in the top leadership in this institution were West Point graduates, who rose to military fame and power during the Civil War. Some of these men were Union Generals George McClellan, Henry Halleck, George Meade, and Confederate generals Robert E. Lee, Joseph Johnston, and P.G.T. Beauregard.[6] The versatility of officers in the Army Corps of Engineers contributed to the success of numerous missions throughout the Civil War. They were responsible for building pontoon and railroad bridges, forts and batteries, the destruction of enemy supply lines, and the construction of roads.[6] The Union forces were not the only ones to employ the use of engineers throughout the war; and on 6 March 1861, once the South had seceded from the Union, among the different acts passed at the time, a provision was included that called for the creation of a Confederate Corps of Engineers.[11]

The progression of the war demonstrated the South's disadvantage in engineering expertise; because of the initial 65 cadets who resigned from West Point to accept positions with the Confederate Army, only seven were placed in the Corps of Engineers.[11] To overcome this obstacle, the Confederate Congress passed legislation that gave a company of engineers to every division in the field; and by 1865, they actually had more engineer officers serving in the field of action than the Union Army.[11] The Army Corps of Engineers served as a main function in making the war effort logistically feasible. One of the main projects for the Army Corps of Engineers was constructing railroads and bridges, which Union forces took advantage of because railroads and bridges provided access to resources and industry. One area where the Confederate engineers were able to outperform the Union Army was in the ability to build fortifications that were used both offensively and defensively along with trenches that made them harder to penetrate. This method of building trenches was known as the zigzag pattern.[11]

20th century

From the beginning, many politicians wanted the Corps to contribute to both military construction and works of a civil nature. Assigned the military construction mission on 1 December 1941 after the Quartermaster Department struggled with the expanding mission,[12] the Corps built facilities at home and abroad to support the U.S. Army and Air Force. During World War II the mission grew to more than 27,000 military and industrial projects in a $15.3 billion mobilization program. Included were aircraft, tank assembly, and ammunition plants, camps for 5.3 million soldiers, depots, ports, and hospitals, as well as the Manhattan Project, and the Pentagon.

In civilian projects, the Corps became the lead federal flood control agency and significantly expanded its civil works activities, becoming among other things, a major provider of hydroelectric energy and the country's leading provider of recreation; its role in responding to natural disasters also grew dramatically. In the late 1960s, the Corps became a leading environmental preservation and restoration agency.

In 1944, specially trained army combat engineers were assigned to blow up underwater obstacles and clear defended ports during the invasion of Normandy.[13][14] During World War II, the Army Corps of Engineers in the European Theater of Operations was responsible for building countless bridges,including the first and longest floating tactical bridge across the Rhine at Remagen, and building or maintaining roads vital to the Allied advance across Europe into the heart of Germany. In the Pacific theater, the Pioneer troops were formed, a hand-selected unit of volunteer Army combat engineers trained in jungle warfare, knife fighting, and unarmed jujitsu (hand-to-hand combat) techniques.[15] Working in camouflage, the Pioneers cleared jungle and prepared routes of advance and established bridgeheads for the infantry as well as demolishing enemy installations.[15]

Five commanding generals (chiefs of staff after the 1903 reorganization) of the United States Army held Engineer commissions early in their careers. All transferred to other branches before rising to the top. They were Alexander Macomb, George B. McClellan, Henry W. Halleck, Douglas MacArthur, and Maxwell D. Taylor.[16]

Notable dates and projects


Occasional civil disasters, including the Great Mississippi Flood of 1927, resulted in greater responsibilities for the Corps. New Orleans is another example of this.

Organization

Headquarters

The Chief of Engineers and Commanding General of U.S. Army Corps of Engineers works under the civilian oversight of the Assistant Secretary of the Army (Civil Works). Three Deputy Commanding Generals report to the Chief of Engineers, who have the following titles, Deputy Commanding General, Deputy Commanding General for Civil and Emergency Operation, and Deputy Commanding General for Military and International Operations.[20] The Corps of Engineers headquarters is located in Washington, DC. The headquarters staff is responsible for Corps of Engineers policy and plans the future direction of all other Corps organizations. It comprises the Executive Office and 17 Staff Principals. USACE has two directors who head up Military Programs and Civil Works, Director of Military Programs and Director of Civil Works.

Divisions and districts

The U.S. Army Corps of Engineers is organized geographically into eight permanent divisions, one provisional division, one provisional district, and one research command reporting directly to the HQ. Within each division, there are several districts.[21] Districts are defined by watershed boundaries for civil works projects and by political boundaries for military projects.

Other USACE organizations

There are several other organizations within the Corps of Engineers:[21][22]

  • Engineer Research and Development Center (ERDC) — the Corps of Engineers research and development command. ERDC comprises six laboratories. (see research below)
  • U.S. Army Engineering and Support Center (CEHNC) — provides engineering and technical services, program and project management, construction management, and innovative contracting initiatives, for programs that are national or broad in scope or not normally provided by other Corps of Engineers elements
  • Finance Center, U.S. Army Corps of Engineers (CEFC) — supports the operating finance and accounting functions throughout the Corps of Engineers
  • Humphreys Engineer Center Support Activity (CEHEC) — provides administrative and operational support for Headquarters, U.S. Army Corps of Engineers and various field offices.
  • Army Geospatial Center (AGC)  — provides geospatial information, standards, systems, support, and services across the Army and the Department of Defense.
  • Marine Design Center (CEMDC) — provides total project management including planning, engineering, and shipbuilding contract management in support of Corps, Army, and national water resource projects in peacetime, and augments the military construction capacity in time of national emergency or mobilization
  • Institute for Water Resources (IWR) — supports the Civil Works Directorate and other Corps of Engineers commands by developing and applying new planning evaluation methods, polices and data in anticipation of changing water resources management conditions.
  • USACE Logistics Activity (ULA)- Provides logistics support to the Corps including supply, maintenance, readiness, materiel, transportation, travel, aviation, facility management, integrated logistics support, management controls, and strategic planning.
  • Enterprise Infrastructure Services (CEEIS) — designs information technology standards for the Corps, including automation, communications, management, visual information, printing, records management, and information assurance. CEEIS outsources the maintenance of its IT services, forming the Army Corps of Engineers Information Technology (ACE-IT). ACE-IT is made up of both civilian government employees and contractors.
  • Deployable Tactical Operations System (DTOS) — provides mobile command and control platforms in support of the quick ramp-up of initial emergency response missions for the Corps. DTOS is a system designed to respond to District, Division, National, and International events.
  • Until 2001 local Directorates of Engineering and Housing (DEH), being constituents of the USACE, had been responsible for the housing, infrastructure and related tasks as environmental protection, garbage removal and special fire departments or fire alarm coordination centers in the garrisons of the U.S. Army abroad as in Europe (e.g. Germany, as in Berlin, Wiesbaden, Karlsruhe etc.) Subsequently, a similar structure called DPWs (Directorates of Public Works), subordinate to the United States Army Installation Management Command, assumed the tasks formerly done by the DEHs.

Directly reporting military units

Mission areas

Warfighting

USACE provides support directly and indirectly to the warfighting effort.[24] They build and help maintain much of the infrastructure that the Army and the Air Force use to train, house, and deploy troops. USACE built and maintained navigation systems and ports provide the means to deploy vital equipment and other material. Corps Research and Development (R&D) facilities help develop new methods and measures for deployment, force protection, terrain analysis, mapping, and other support.

USACE directly supports the military in the battlezone, making expertise available to commanders to help solve and avoid engineering and other problems. Forward Engineer Support Teams, FEST-A's or FEST-M's, may accompany combat engineers to provide immediate support, or to reach back electronically into the rest of the Corps for the necessary expertise. A FEST-A team is an 8 person detachment while a FEST-M is approximately 36 individuals. These teams are designed to provide immediate technical engineering support to the warfighter or in a disaster area. Corps professionals use the knowledge and skills honed on both military and civil projects to support the U.S. and local communities in the areas of real estate, contracting, mapping, construction, logistics, engineering, and management experience. This work currently includes support for rebuilding Iraq, establishing Afghanistan infrastructure, and supporting international and interagency services.

In addition, the work of almost 26,000 civilians on civil works programs throughout USACE provide a training ground for similar capabilities worldwide. USACE civilians volunteer for assignments worldwide. For example, hydropower experts have helped repair, renovate, and run hydropower dams in Iraq in an effort to help get Iraqis to become self-sustaining.[22][25]

Homeland security

USACE supports the United States' Department of Homeland Security and the Federal Emergency Management Agency (FEMA) through its security planning, force protection, research and development, disaster preparedness efforts, and quick response to emergencies and disasters.[26]

The Corps conducts its emergency response activities under two basic authorities — the Flood Control and Coastal Emergency Act (Pub.L. 93–288). In a typical year, the Corps of Engineers responds to more than 30 Presidential disaster declarations, plus numerous state and local emergencies. Emergency responses usually involve cooperation with other military elements and Federal agencies in support of State and local efforts.

Infrastructure support

Work comprises engineering and management support to military installations, global real estate support, civil works support (including risk and priorities), operations and maintenance of Federal navigation and flood control projects, and monitoring of dams and levees.[27]

More than 67 percent of the goods consumed by Americans and more than half of the nation's oil imports are processed through deepwater ports maintained by the Corps of Engineers, which maintains more than 12,000 miles (19,000 km) of commercially navigable channels across the U.S.

In both its Civil Works mission and Military Construction program, the Corps is responsible for billions of dollars of the nation's infrastructure. For example, the Corps maintains direct control of 609 dams, maintains and/or operates 257 navigation locks, and operates 75 hydroelectric facilities generating 24% of the nation's hydropower and three percent of its total electricity. USACE inspects over 2,000 Federal and non-Federal levees every two years.

Four billion gallons of water per day are drawn from the Corps' 136 multi-use flood control projects comprising 9,800,000 acre feet (12.1 km3) of water storage, making it one of the United States' largest water supply agencies.[22]

The 249th Engineer Battalion (Prime Power), the only active duty unit in USACE, generates and distributes prime electrical power in support of warfighting, disaster relief, stability and support operations as well as provides advice and technical assistance in all aspects of electrical power and distribution systems. The battalion deployed in support of recovery operations after 9/11 and was instrumental in getting Wall Street back up and running within a week.[28] The battalion also deployed in support of post-Katrina operations.

All of this work represents a significant investment in the nation's resources.

Water resources

Through its Civil Works program, USACE carries out a wide array of projects that provide coastal protection, flood protection, hydropower, navigable waters and ports, recreational opportunities, and water supply.[29] Work includes coastal protection and restoration, including a new emphasis on a more holistic approach to risk management. As part of this work, the Corps is the number one provider of outdoor recreation in the U.S., so there is a significant emphasis on water safety.


Army involvement in works "of a civil nature," including water resources, goes back almost to the origins of the U.S. Over the years, as the nation's needs have changed, so have the Army's Civil Works missions.

Major areas of emphasis include the following:

  • Navigation. Supporting navigation by maintaining and improving channels was the Corps of Engineers' earliest Civil Works mission, dating to Federal laws in 1824 authorizing the Corps to improve safety on the Ohio and Mississippi Rivers and several ports. Today, the Corps maintains more than 12,000 miles (19,000 km) of inland waterways and operates 235 locks. These waterways—a system of rivers, lakes and coastal bays improved for commercial and recreational transportation—carry about 1/6 of the nation's inter-city freight, at a cost per ton-mile about 1/2 that of rail or 1/10 that of trucks. USACE also maintains 300 commercial harbors, through which pass 2,000,000,000 short tons (1.8×109 metric tons) of cargo a year, and more than 600 smaller harbors.
  • Flood Risk Management. The Corps was first called upon to address flood problems along the Mississippi river in the mid-19th century. They began work on the Mississippi River and Tributaries Flood Control Project in 1928, and the Flood Control Act of 1936 gave the Corps the mission to provide flood protection to the entire country.
  • Recreation. The Corps of Engineers is the nation's largest provider of outdoor recreation, operating more than 2,500 recreation areas at 463 projects (mostly lakes) and leasing an additional 1,800 sites to state or local park and recreation authorities or private interests. The Corps hosts about 360 million visits a year at its lakes, beaches and other areas, and estimates that 25 million Americans (one in ten) visit a Corps project at least once a year. Supporting visitors to these recreation areas generates 600,000 jobs.
  • Hydroelectric Power. The Corps was first authorized to build hydroelectric plants in the 1920s, and today operates 75 power plants, producing one fourth of the nation's hydro-electric power—or three percent of its total electric energy. This makes USACE the fifth largest electric supplier in the United States.
  • Shore Protection. With a large proportion of the U.S. population living near our sea and lake shores, and an estimated 75% of U.S. vacations being spent at the beach, there has been Federal interest — and a Corps of Engineers mission — in protecting these areas from hurricane and coastal storm damage.
  • Dam Safety. The Corps of Engineers develops engineering criteria for safe dams, and conducts an active inspection program of its own dams.[22]
  • Water Supply. The Corps first got involved in water supply in the 1850s, when they built the Washington Aqueduct. Today USACE reservoirs supply water to nearly 10 million people in 115 cities. In the drier parts of the Nation, water from Corps reservoirs is also used for agriculture.[6][22]
  • Water Safety. The Corps of Engineers has taken an interest in recreational water safety. With current initiatives for increasing the use rate of life jackets and preventing the use of alcohol while boating.

Environment

The U.S. Army Corps of Engineers environmental mission has two major focus areas: restoration and stewardship. The Corps supports and manages numerous environmental programs, that run the gamut from cleaning up areas on former military installations contaminated by hazardous waste or munitions to helping establish/reestablish wetlands that helps endangered species survive.[30] Some of these programs include Ecosystem Restoration, Formerly Used Defense Sites, Environmental Stewardship, EPA Superfund, Abandoned Mine Lands, Formerly Utilized Sites Remedial Action Program, Base Realignment and Closure, 2005, and Regulatory.

This mission includes education as well as regulation and cleanup.

The U.S. Army Corps of Engineers has an active environmental program under both its Military and Civil Programs.[30] The Civil Works environmental mission that ensures all Corps projects, facilities and associated lands meet environmental standards. The program has four functions: compliance, restoration, prevention, and conservation. The Corps also regulates all work in wetlands and waters of the United States.

The Military Programs Environmental Program manages design and execution of a full range of cleanup and protection activities:


  • cleans up sites contaminated with hazardous waste, radioactive waste, or ordnance
  • complies with federal, state, and local environmental laws and regulations
  • strives to minimize our use of hazardous materials
  • conserves our natural and cultural resources

The following are major areas of environmental emphasis:

  • Wetlands and Waterways Regulation and Permitting
  • Ecosystem Restoration
  • Environmental Stewardship
  • Radioactive site cleanup through the Formerly Used Sites Remedial Action Program (FUSRAP)
  • Base Realignment and Closure (BRAC)
  • Formerly Used Defense Sites (FUDS)
  • Support to EPA's Superfund Program

See also Environmental Enforcement below.

Operational facts and figures

Summary of facts and figures as of 2007, provided by the Corps of Engineers:[22]

  • One HQ, 8 Divisions, 2 Provisional Division, 45 Districts, 6 Centers, one active-duty unit, 2 Engineer Reserve Command
  • At work in more than 90 countries
  • Supports 159 Army installations and 91 Air Force installations
  • Owns and operates 609 dams
  • Owns and/or operates 257 navigation lock chambers at 212 sites
  • Largest owner-operator of hydroelectric plants in the US. Owns and operates 75 plants—24% of U.S. hydropower capacity (3% of the total U.S. electric capacity)[31]
  • Operates and maintains 12,000 miles (19,000 km) of commercial inland navigation channels
  • Maintains 926 coast, Great Lakes, and inland harbors
  • Dredge 255,000,000 cubic yards (195,000,000 m3) annually for construction or maintenance
  • Nation's number one provider of outdoor recreation with more than 368 million visits annually to 4,485 sites at 423 Corps projects (383 major lakes and reservoirs)[32]
  • Total water supply storage capacity of 329,900,000 acre feet (406.9 km3)
  • Average annual damages prevented by Corps flood risk management projects (1995–2004) of $21 billion (see "Civil works controversies" below)
  • Approximately 137 environmental protection projects under construction (September 2006 figure)
  • Approximately 38,700 acres (157,000,000 m2) of wetlands restored, created, enhanced, or preserved annually under the Corps' Regulatory Program
  • Approximately $4 billion in technical services to 70 non-DoD Federal agencies annually
  • Completed (and continuing work on) thousands of infrastructure projects in Iraq at an estimated cost over $9 billion: school projects (324,000 students), crude oil production 3 million barrels per day (480,000 m3/d), potable water projects (3.9 million people (goal 5.2 million)), fire stations, border posts, prison/courthouse improvements, transportation/communication projects, village road/expressways, railroad stations, postal facilities, and aviation projects. More than 90 percent of the USACE construction contracts have been awarded to Iraqi-owned businesses — offering employment opportunities, boosting the economy, providing jobs, and training, promoting stability and security where before there was none. Consequently, the mission is a central part of the U.S. exit strategy.
  • The Corps has one of the strongest Small Business Programs in the Army—Each year, approximately 33% of all contract dollars are obligated with Small Businesses, Small Disadvantaged Businesses, Service Disabled Veteran Owned Small Businesses, Women Owned Small Businesses, Historically Underutilized Business Zones, and Historically Black Colleges and Universities. Jackie Robinson-Burnette was named the Chief of the Corps Small Business Program in May 2010. The program is managed through an integrated network of over 60 Small Business Advisors, 8 Division Commanders, 4 Center Directors, and 45 District Commanders.


Environmental Protection and Regulatory Program

The Regulatory Program is authorized to protect the Nation's aquatic resources. The Corps evaluates permit applications for essentially all construction activities that occur in the Nation's waters, including wetlands. Two primary authorities granted to the Army Corps of Engineers by Congress fall under Section 10 of the Rivers and Harbors Act and Section 404 of the Clean Water Act.

Section 10 of the Rivers and Harbors Act of 1899 (codified in Chapter 33, Section 403 of the United States Code) gave the Corps authority over navigable waters of the United States. As navigable waters are defined as "navigable waters of the United States are those waters that are subject to the ebb and flow of the tide and/or are presently being used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce". Section 10 covers construction, excavation, or deposition of materials in, over, or under such waters, or any work that would affect the course, location, condition or capacity of those waters. Actions requiring Section 10 permits include structures (e.g., piers, wharfs, breakwaters, bulkheads, jetties, weirs, transmission lines) and work such as dredging or disposal of dredged material, or excavation, filling or other modifications to the navigable waters of the United States. The Coast Guard also has responsibility for permitting the erection or modification of bridges over navigable waters of the U.S.

Another of the major responsibilities of the Army Corps of Engineers is administering the permitting program under Section 404 of the Federal Water Pollution Control Act of 1972. (aka "The Clean Water Act"). This Act authorized the Secretary of the Army to issue permits for the discharge of dredged and fill material in waters of the United States, including adjacent wetlands.[22] The geographic extent of waters of the United States subject to Section 404 permits fall under a broader definition and include tributaries to navigable waters and adjacent wetlands. The Corps must first determine if the waters at the project site are jurisdictional and subject to the requirements of the Section 404 permitting program. Once jurisdiction has been established, permit review and authorization follows a sequence process that encourages avoidance of impacts, followed by minimizing impacts and, finally, requiring mitigation for unavoidable impacts to the aquatic environment. This sequence is described in the Section 404(b)(1) guidelines.

There are three types of permits issued by the Corps of Engineers: Nationwide, Regional General, and Individual. 80% of the permits issued are nationwide permits, which include 50 general type of activities for minimal impacts to waters of the United States, as published in the Federal Register. Nationwide permits are subject to a reauthorization process every 5 years, with the most recent reauthorization occurring in March 2012. To gain authorization under a nationwide permit, an applicant must comply with the terms and conditions of the nationwide permit. Select nationwide permits require preconstruction notification to the applicable Corps district office notifying them of his or her intent, type and amount of impact and fill in waters, and a site map. Although the nationwide process is fairly simple, Corps approval must be obtained before commencing with any work in waters of the United States. Regional general permits are specific to each Corps district office. Individual permits are generally required for projects that impact greater than 0.5 acres (2,000 m2) of waters of the United States. Individual permits are required for activities that result in more than minimal impacts to the aquatic environment.

Research

The Corps of Engineers has two research organizations, the Engineer Research and Development Center (ERDC) and the Army Geospatial Center (AGC).

ERDC provides science, technology, and expertise in engineering and environmental sciences to support both military and civil/civilian customers. ERDC research support includes:

AGC coordinates, integrates, and synchronizes geospatial information requirements and standards across the Army and provides direct geospatial support and products to warfighters. See also Geospatial Information Officer.

Insignia

Main article: Corps Castle

The Corps of Engineers branch insignia, the Corps Castle, is believed to have originated on an informal basis. In 1841, cadets at West Point wore insignia of this type. In 1902, the Castle was formally adopted by the Corps of Engineers as branch insignia.[33] The "castle" is actually the Pershing Barracks at the United States Military Academy in West Point, New York[34]

A current tradition was established with the "Gold Castles" branch insignia of General of the Army Douglas MacArthur, West Point Class of 1903, who served in the Corps of Engineers early in his career and had received the two pins as a graduation gift of his family. In 1945, near the conclusion of World War II, General MacArthur gave his personal pins to his Chief Engineer, General Leif J. Sverdrup. On 2 May 1975, upon the 200th anniversary of the Corps, retired General Sverdrup, who had civil engineering projects including the landmark 17-mile (27 km)-long Chesapeake Bay Bridge-Tunnel to his credit, presented the Gold Castles to then-Chief of Engineers Lieutenant General William C. Gribble, Jr., who had also served under General MacArthur in the Pacific. General Gribble then announced a tradition of passing the insignia along to future Chiefs of Engineers, and it has been done so since.[35]

Controversies

Civil works

Some of the Corps of Engineers' civil works projects have been characterized in the press as being pork barrel or boondoggles such as the New Madrid Floodway Project and the New Orleans flood protection.[36][37] Projects have allegedly been justified based on flawed or manipulated analyses during the planning phase. Some projects are said to have created profound detrimental environmental effects and/or provided questionable economic benefit such as the Mississippi River Gulf Outlet in southeast Louisiana.[38] Faulty design and substandard construction have been cited in the failure of levees in the wake of Hurricane Katrina that caused flooding of 80% of the city of New Orleans.

Review of Corps of Engineers' projects has also been criticized for its lack of impartiality. The investigation of levee failure in New Orleans during Hurricane Katrina was sponsored by the American Society of Civil Engineers (ASCE) but funded by the Corps of Engineers and involved its employees.[39][40]

Corps of Engineers projects can be found in all fifty states,[41] and are specifically authorized and funded directly by Congress. Local citizen, special interest, and political groups lobby Congress for authorization and appropriations for specific projects in their area.[42]

Senator Russ Feingold and Senator John McCain sponsored an amendment requiring peer review of Corps projects to the Water Resources Development Act of 2006,[43] proclaiming "efforts to reform and add transparency to the way the U.S. Army Corps of Engineers receives funding for and undertakes water projects." A similar bill, the Water Resources Development Act of 2007, which included the text of the original Corps peer review measure, eventually passed by Congress in 2007, overriding Presidential veto.[44]

Military construction

A number of Army camps and facilities designed by the Corps of Engineers, including the former Camp O'Ryan in New York State, have reportedly had a negative impact on the surrounding communities. Camp O'Ryan, with its rifle range, has possibly contaminated well and storm runoff water with lead. This runoff water eventually runs into the Niagara River and Lake Ontario, sources of drinking water to millions of people. This situation is exacerbated by a failure to locate the engineering and architectural plans for the camp, which were produced by the New York District in 1949.[45][46]

Greenhouse whistleblower suit

Bunnatine "Bunny" Greenhouse, a formerly high-ranking official in the Corps, won a lawsuit against the United States government in July 2011. Greenhouse had objected to the Corps accepting cost projections from KBR in a no-bid, noncompetitive, contract. After she complained, Greenhouse was demoted from her Senior Executive Service position, stripped of her top secret security clearance, and even, according to Greenhouse, had her office booby-trapped with a trip-wire from which she sustained a knee injury. A U.S. District court awarded Greenhouse $970,000 in full restitution of lost wages, compensatory damages, and attorney fees.[47]

See also

Engineering portal

References

 This article incorporates The United States Army Corps of Engineers website".

 This article incorporates Miscellaneous USACE History Publications".

External links

  • United States Army Corps of Engineers
  • Proposed and finalized federal regulations from the United States Army Corps of Engineers
  • Engineering the Victory: The Story of the Corps of Engineers (WWII history booklet)
  • Historic photos of Corps of Engineers lock and dam projects throughout Texas in 1910-20s (from the Portal to Texas History)
  • Papers of Joseph W. Carlson (an officer with the Army Corps of Engineers at Normandy Base Section (1944)) — Dwight D. Eisenhower Presidential Library
  • History of the U.S. Army Corps of Topographical Engineers
  • Levees.org — national grassroots group (chapters in LA, CA, FL, IL) holding USACE accountable for its flood protection
  • Corps Reform Network – a network of grassroots groups working to ensure that Army Corps of Engineers projects are economically and environmentally sound
  • Historic technical reports from the US Army Corps of Engineers (and other Federal agencies) are available in the Technical Report Archive and Image Library (TRAIL)

Template:USACE divisions

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.