World Library  
Flag as Inappropriate
Email this Article

Wolff-Chaikoff effect

Article Id: WHEBN0022643255
Reproduction Date:

Title: Wolff-Chaikoff effect  
Author: World Heritage Encyclopedia
Language: English
Subject: Hypothyroidism, Potassium iodide, Lugol's iodine, Iodine-131, Jod-Basedow phenomenon
Publisher: World Heritage Encyclopedia

Wolff-Chaikoff effect

The Wolff–Chaikoff effect (pronounced "woolf' cha'kof"),[1] discovered by Drs. Jan Wolff and Israel Lyon Chaikoff at the University of California, is a reduction in thyroid hormone levels caused by ingestion of a large amount of iodine.[2] In 1948, Wolff and Chaikoff reported that injection of iodine in rats almost completely inhibited organification (oxidation of iodide) in the thyroid gland.[3][4] Patients with Graves' disease are more sensitive than euthyroid patients,[5] and iodine has been used to manage Graves' disease.

The Wolff–Chaikoff effect is an autoregulatory phenomenon that inhibits organification in the thyroid gland, the formation of thyroid hormones inside the thyroid follicle, and the release of thyroid hormones into the bloodstream.[6] This becomes evident secondary to elevated levels of circulating iodide. The Wolff–Chaikoff effect lasts several days (around 10 days), after which it is followed by an "escape phenomenon",[7] which is described by resumption of normal organification of iodine and normal thyroid peroxidase function. "Escape phenomenon" is believed to occur because of decreased inorganic iodine concentration secondary to down-regulation of sodium-iodide symporter (NIS) on the basolateral membrane of the thyroid follicular cell.

The Wolff–Chaikoff effect can be used as a treatment principle against hyperthyroidism (especially thyroid storm) by infusion of a large amount of iodine to suppress the thyroid gland. Iodide was used to treat hyperthyroidism before antithyroid drugs such as propylthiouracil and methimazole were developed. Hyperthyroid subjects given iodide may experience a decrease in basal metabolic rate that is comparable to that seen after thyroidectomy.[6] The Wolff–Chaikoff effect also explains the hypothyroidism produced in some patients by several iodine-containing drugs, including amiodarone. The Wolff–Chaikoff effect is also part of the mechanism for the use of potassium iodide in nuclear emergencies.[8][9][10]

See also


Input source : Dr. Kshitij Yadav

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.