World Library  
Flag as Inappropriate
Email this Article

Wolstenholme prime

Article Id: WHEBN0029426653
Reproduction Date:

Title: Wolstenholme prime  
Author: World Heritage Encyclopedia
Language: English
Subject: Megaprime, Million, Gaussian integer, Twin prime, Schröder number
Publisher: World Heritage Encyclopedia

Wolstenholme prime

Wolstenholme prime
Named after Joseph Wolstenholme
Publication year 1995[1]
Author of publication McIntosh, R. J.
Number of known terms 2
Conjectured number of terms Infinite
Subsequence of Irregular primes
First terms 16843, 2124679
Largest known term 2124679
OEIS index A088164

In number theory, a Wolstenholme prime is a special type of prime number satisfying a stronger version of Wolstenholme's theorem. Wolstenholme's theorem is a congruence relation satisfied by all prime numbers greater than 7. Wolstenholme primes are named after mathematician Joseph Wolstenholme, who first described this theorem in the 19th century.

Interest in these primes first arose due to their connection with Fermat's last theorem, another theorem with significant importance in mathematics. Wolstenholme primes are also related to other special classes of numbers, studied in the hope to be able to generalize a proof for the truth of the theorem to all positive integers greater than two.

The only two known Wolstenholme primes are 16843 and 2124679 (sequence A088164 in OEIS). There are no other Wolstenholme primes less than 109.[2]


List of unsolved problems in mathematics
Are there any Wolstenholme primes other than 16843 and 2124679?

Wolstenholme prime can be defined in a number of equivalent ways.

Definition via binomial coefficients

A Wolstenholme prime is a prime number p > 7 that satisfies the congruence

{2p-1 \choose p-1} \equiv 1 \pmod{p^4},

where the expression in left-hand side denotes a binomial coefficient.[3] Compare this with Wolstenholme's theorem, which states that for every prime p > 3 the following congruence holds:

{2p-1 \choose p-1} \equiv 1 \pmod{p^3}.

Definition via Bernoulli numbers

A Wolstenholme prime is a prime p that divides the numerator of the Bernoulli number Bp−3.[4][5][6] The Wolstenholme primes therefore form a subset of the irregular primes.

Definition via irregular pairs

A Wolstenholme prime is a prime p such that (p, p–3) is an irregular pair.[7][8]

Definition via harmonic numbers

A Wolstenholme prime is a prime p such that[9]

H_{p - 1} \equiv 0 \pmod{p^3}\, ,

i.e. the numerator of the harmonic number H_{p-1} expressed in lowest terms is divisible by p3.

Search and current status

The search for Wolstenholme primes began in the 1960s and continued over the following decades, with the latest results published in 2007. The first Wolstenholme prime 16843 was found in 1964, although it was not explicitly reported at that time.[10] The 1964 discovery was later independently confirmed in the 1970s. This remained the only known example of such a prime for almost 20 years, until the discovery announcement of the second Wolstenholme prime 2124679 in 1993.[11] Up to 1.2×107, no further Wolstenholme primes were found.[12] This was later extended to 2×108 by McIntosh in 1995 [5] and Trevisan & Weber were able to reach 2.5×108.[13] The latest result as of 2007 is that there are only those two Wolstenholme primes up to 109.[14]

Expected number of Wolstenholme primes

It is conjectured that infinitely many Wolstenholme primes exist. It is conjectured that the number of Wolstenholme primes ≤ x is about ln ln x, where ln denotes the natural logarithm. For each prime p ≥ 5, the Wolstenholme quotient is defined as

W_p \frac{{2p-1 \choose p-1}-1}{p^3}.

Clearly, p is a Wolstenholme prime if and only if Wp ≡ 0 (mod p). Empirically one may assume that the remainders of Wp modulo p are uniformly distributed in the set {0, 1, ..., p–1}. By this reasoning, the probability that the remainder takes on a particular value (e.g., 0) is about 1/p.[5]

See also


  1. ^ Wolstenholme primes were first described by McIntosh in McIntosh 1995, p. 385
  2. ^ Weisstein, Eric W., "Wolstenholme prime", MathWorld.
  3. ^ Cook, J. D. "Binomial coefficients". Retrieved 21 December 2010. 
  4. ^ Clarke & Jones 2004, p. 553.
  5. ^ a b c McIntosh 1995, p. 387.
  6. ^ Zhao 2008, p. 25.
  7. ^ Johnson 1975, p. 114.
  8. ^ Buhler et al. 1993, p. 152.
  9. ^ Zhao 2007, p. 18.
  10. ^ Selfridge and Pollack published the first Wolstenholme prime in Selfridge & Pollack 1964, p. 97 (see McIntosh & Roettger 2007, p. 2092).
  11. ^ Ribenboim 2004, p. 23.
  12. ^ Zhao 2007, p. 25.
  13. ^ Trevisan & Weber 2001, p. 283–284.
  14. ^ McIntosh & Roettger 2007, p. 2092.


  • Selfridge, J. L.; Pollack, B. W. (1964), "Fermat's last theorem is true for any exponent up to 25,000", Notices of the American Mathematical Society 11: 97 
  • Johnson, W. (1975), "Irregular Primes and Cyclotomic Invariants",   Archived at WebCite
  • Buhler, J.; Crandall, R.; Ernvall, R.; Metsänkylä, T. (1993), "Irregular Primes and Cyclotomic Invariants to Four Million",   Archived at WebCite
  • McIntosh, R. J. (1995), "On the converse of Wolstenholme's Theorem",   Archived at WebCite
  • Trevisan, V.; Weber, K. E. (2001), "Testing the Converse of Wolstenholme's Theorem", Matemática Contemporânea 21: 275–286  Archived at WebCite
  •   Archived at WebCite
  • Clarke, F.; Jones, C. (2004), "A Congruence for Factorials", Bulletin of the London Mathematical Society 36 (4): 553–558,   Archived at WebCite
  • McIntosh, R. J.; Roettger, E. L. (2007), "A search for Fibonacci-Wieferich and Wolstenholme primes", Mathematics of Computation 76: 2087–2094,   Archived at WebCite
  • Zhao, J. (2007), variations of Lucas' theorem"5"Bernoulli numbers, Wolstenholme's theorem, and p, Journal of Number Theory 123: 18–26,  Archived at WebCite
  • Zhao, J. (2008), "Wolstenholme Type Theorem for Multiple Harmonic Sums", International Journal of Number Theory 4 (1): 73–106  Archived at WebCite

Further reading

External links

  • Caldwell, Chris K. Wolstenholme prime from The Prime Glossary
  • McIntosh, R. J. Wolstenholme Search Status as of March 2004 e-mail to Paul Zimmermann
  • Bruck, R. Wolstenholme's Theorem, Stirling Numbers, and Binomial Coefficients
  • Conrad, K. -adic Growth of Harmonic SumspThe interesting observation involving the two Wolstenholme primes
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.