World Library  
Flag as Inappropriate
Email this Article

Zaslavskii map

Article Id: WHEBN0002052935
Reproduction Date:

Title: Zaslavskii map  
Author: World Heritage Encyclopedia
Language: English
Subject: Chaos theory, List of chaotic maps, Exponential map (discrete dynamical systems), Duffing map, Kaplan–Yorke map
Publisher: World Heritage Encyclopedia

Zaslavskii map

Zaslavskii map with parameters: \epsilon=5, \nu=0.2, r=2.

The Zaslavskii map is a chaotic behavior. The Zaslavskii map takes a point (x_n,y_n) in the plane and maps it to a new point:

x_{n+1}=[x_n+\nu(1+\mu y_n)+\epsilon\nu\mu\cos(2\pi x_n)]\, (\textrm{mod}\,1)
y_{n+1}=e^{-r}(y_n+\epsilon\cos(2\pi x_n))\,


\mu = \frac{1-e^{-r}}{r}

where mod is the modulo operator with real arguments. The map depends on four constants ν, μ, ε and r. Russel (1980) gives a Hausdorff dimension of 1.39 but Grassberger (1983) questions this value based on their difficulties measuring the correlation dimension.

See also


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.