World Library  
Flag as Inappropriate
Email this Article

Zero-lift drag coefficient

Article Id: WHEBN0004859028
Reproduction Date:

Title: Zero-lift drag coefficient  
Author: World Heritage Encyclopedia
Language: English
Subject: Fokker Dr.I, Grumman F6F Hellcat, General Dynamics F-111C, Convair B-58 Hustler, Consolidated PBY Catalina
Collection: Aerodynamics
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Zero-lift drag coefficient

In aerodynamics, the zero-lift drag coefficient C_{D,0} is a dimensionless parameter which relates an aircraft's zero-lift drag force to its size, speed, and flying altitude.

Mathematically, zero-lift drag coefficient is defined as C_{D,0} = C_D - C_{D,i}, where C_D is the total drag coefficient for a given power, speed, and altitude, and C_{D,i} is the lift-induced drag coefficient at the same conditions. Thus, zero-lift drag coefficient is reflective of parasitic drag which makes it very useful in understanding how "clean" or streamlined an aircraft's aerodynamics are. For example, a Sopwith Camel biplane of World War I which had many wires and bracing struts as well as fixed landing gear, had a zero-lift drag coefficient of approximately 0.0378. Compare a C_{D,0} value of 0.0161 for the streamlined P-51 Mustang of World War II[1] which compares very favorably even with the best modern aircraft.

The drag at zero-lift can be more easily conceptualized as the drag area (f) which is simply the product of zero-lift drag coefficient and aircraft's wing area (C_{D,0} \times S where S is the wing area). Parasitic drag experienced by an aircraft with a given drag area is approximately equal to the drag of a flat square disk with the same area which is held perpendicular to the direction of flight. The Sopwith Camel has a drag area of 8.73 sq ft (0.811 m2), compared to 3.80 sq ft (0.353 m2) for the P-51. Both aircraft have a similar wing area, again reflecting the Mustang's superior aerodynamics in spite of much larger size.[1] In another comparison with the Camel, a very large but streamlined aircraft such as the Lockheed Constellation has a considerably smaller zero-lift drag coefficient (0.0211 vs. 0.0378) in spite of having a much larger drag area (34.82 ft² vs. 8.73 ft²).

Furthermore, an aircraft's maximum speed is proportional to the cube root of the ratio of power to drag area, that is:

V_{max}\ \propto\ \sqrt[3]{power/f}.[1]

Estimating zero-lift drag[1]

As noted earlier, C_{D,0} = C_D - C_{D,i}.

The total drag coefficient can be estimated as:

C_D = \frac{550 \eta P}{\frac{1}{2} \rho_0 [\sigma S (1.47V)^3]},

where \eta is the propulsive efficiency, P is engine power in horsepower, \rho_0 sea-level air density in slugs/cubic foot, \sigma is the atmospheric density ratio for an altitude other than sea level, S is the aircraft's wing area in square feet, and V is the aircraft's speed in miles per hour. Substituting 0.002378 for \rho_0, the equation is simplified to:

C_D = 1.456 \times 10^5 (\frac{\eta P}{\sigma S V^3}).

The induced drag coefficient can be estimated as:

C_{D,i} = \frac{C_L^2}{\pi A \epsilon},

where C_L is the lift coefficient, A is the aspect ratio, and \epsilon is the aircraft's efficiency factor.

Substituting for C_L gives:

C_{D,i}=\frac{4.822 \times 10^4}{A \epsilon \sigma^2 V^4} (W/S)^2,

where W/S is the wing loading in lb/ft².

References

  1. ^ a b c d Loftin, LK, Jr. "Quest for performance: The evolution of modern aircraft. NASA SP-468". Retrieved 2006-04-22. 
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.