World Library  
Flag as Inappropriate
Email this Article

Zincke aldehyde

Article Id: WHEBN0008206246
Reproduction Date:

Title: Zincke aldehyde  
Author: World Heritage Encyclopedia
Language: English
Subject: Amine, Aldehyde, Zincke reaction
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Zincke aldehyde

Zincke aldehydes, or 5-aminopenta-2,4-dienals, are the product of the reaction of a pyridinium salt with two equivalents of any secondary amine, followed by basic hydrolysis. Using secondary amines (as opposed to primary amines) the Zincke reaction takes on a different shape forming Zincke aldehydes in which the pyridine ring is ring-opened with the terminal iminium group hydrolyzed to an aldehyde. The use of the dinitrophenyl group for pyridine activation was first reported by Theodor Zincke.[1][2][3] The use of cyanogen bromide for pyridine activation was independently reported by W. König:[4]

The synthesis and utility of Zincke aldehydes has been reviewed.[5][6][7]

A variation of the Zincke reaction has been applied in the synthesis of novel indoles:[8]

with cyanogen bromide mediated pyridine activation (König method).[4]

More recently, an interesting rearrangement of Zincke aldehydes to Z-unsaturated amides was discovered serendipitously while trying to do an

The Vanderwal group has also reported the synthesis of 4-stannyldienals from Zincke aldehydes by addition of tributylstannyl anion and quenching with acetyl chloride.[12] The products are useful substrates for Stille cross-coupling reactions to give interesting polyene structures.

In 2009, Totally Synthetic.

Also in 2009, the first reports of Zincke aldehydes undergoing a Pictet-Spengler reaction appeared from the group of Delpech and the late Christian Marazano.[15] This reaction provided the tetrahydro-β-carboline or tetrahydroisoquinoline core present in many alkaloid natural products, and was applied to the construction of a known intermediate in a previous total synthesis.

One drawback of the Zincke Aldehyde synthesis is the need for 2 equivalents of the amine in the initial pyridine ring opening reaction. This is of particular concern for the case of complex secondary amines required for natural product synthesis. The group of Michel recently found an alternative synthesis by condensation onto a variety of glutaconaldehyde derivatives using TFA. This solution has greatly simplified the production and purification of complex Zincke aldehydes. [16]

References

External links

  • Vanderwal Group Homepage
  • Houk Group Homepage
  • Totally Synthetic blog
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.