World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000205710
Reproduction Date:

Title: Achernar  
Author: World Heritage Encyclopedia
Language: English
Subject: Eridanus (constellation), Theta Eridani, B(e) star, Pleione (star), Alpha Centauri
Publisher: World Heritage Encyclopedia



The position of Achernar (lower right).
Observation data
Epoch J2000      Equinox J2000
Constellation Eridanus
Right ascension 01h 37m 42.84548s[1]
Declination –57° 14′ 12.3101″[1]
Apparent magnitude (V) 0.46[2] (0.40 - 0.46[3])
Spectral type B6 Vep[4]
U−B color index −0.66[2]
B−V color index −0.16[2]
Variable type γ Cas[3]
Radial velocity (Rv) +16[5] km/s
Proper motion (μ) RA: 87.00 ± 0.58[1] mas/yr
Dec.: −38.24 ± 0.50[1] mas/yr
Parallax (π) 23.39 ± 0.57[1] mas
Distance 139 ± 3 ly
(43 ± 1 pc)
Absolute magnitude (MV) –2.77
Mass 6.7[6] M
Radius 7.3 × 11.4[7] R
Luminosity 3,150[7] L
Surface gravity (log g) 3.5[8] cgs
Temperature ~15,000[8] K
Rotational velocity (v sin i) 250[8] km/s
Age 1–5 × 108 years
Other designations
α Eri, CD -57°334, FK5 54, HD 10144, HIP 7588, HR 472, SAO 232481,[9] 70 Eri, 2 G. Eri, 水委一
Database references

Achernar (α Eri, α Eridani, Alpha Eridani), sometimes spelled Achenar, is the brightest star in the constellation Eridanus and the tenth-brightest star in the night sky. Of the ten apparent brightest stars in the nighttime sky, Achernar is the hottest and bluest in color, being of spectral type B.[nb 1] Lying at the southern tip of Eridanus, the star has an unusually rapid rotational velocity, causing it to become oblate in shape. Achernar is actually a binary star system,[6] with the second star known as Achernar B. The second star is smaller and orbits Achernar A at a distance of roughly 12 astronomical units (AU). Achernar B is of spectral type A.


  • Physical properties 1
  • History and etymology 2
  • Other names 3
  • In culture 4
  • Notes 5
  • References 6
  • External links 7

Physical properties

Extreme rotation speed has flattened Achernar.

Achernar is a bright, blue star with about seven times the mass of the Sun.[6] As determined by the Hipparcos astrometry satellite,[10][11] it is approximately 139 light-years (43 pc) away.[1] It is a main sequence star with a stellar classification of B6 Vep, but is about 3,150 times more luminous than the Sun. Achernar is in the deep southern sky and never rises above the horizon beyond 33°N, roughly the latitude of Dallas, Texas. Achernar is best seen from the southern hemisphere in November; it is circumpolar above (i.e. south of) 33°S, roughly the latitude of Santiago. On this latitude, e.g. the south coast of South Africa (Cape Town to Port Elizabeth) when in lower culmination it is barely visible to the naked eye as it is only 1 degree above the horizon, but still circumpolar. Further south, it is well visible at all times during night.

Until about March 2000, Achernar and Fomalhaut were the two first-magnitude stars furthest in angular distance from any other first-magnitude star in the celestial sphere. Antares, in the constellation of Scorpius, is now the most isolated first-magnitude star, although Antares is located in a constellation with many bright second-magnitude stars, whereas the stars surrounding Achernar and Fomalhaut are considerably fainter.

Infrared observations of the star using an adaptive optics system on the Very Large Telescope show that Achernar has a companion star in a close orbit. This appears to be an A-type star in the stellar classification range A0V–A3V, which suggests a stellar mass of about double the Sun's mass. The separation of the two stars is roughly 12.3 AU and their orbital period is at least 14–15 years.[6]

As of 2003, Achernar is the least spherical star in the Milky Way studied to date.[12] It spins so rapidly that it has assumed the shape of an oblate spheroid with an equatorial diameter 56% greater than its polar diameter. The polar axis is inclined about 65° to the line of sight from the Earth.[7] Since it is actually a binary star, its highly distorted shape may cause non-negligible departures of the companion's orbital trajectory with respect to a Keplerian ellipse. A similar situation occurs for the star Regulus.

Because of the distorted shape of this star, there is a significant temperature variation by latitude. At the pole, the temperature may be above 20,000 K, while the equator is at or below 10,000 K. The average temperature of the star is about 15,000 K. The high polar temperatures are generating a fast polar wind that is ejecting matter from the star, creating a polar envelope of hot gas and plasma. The entire star is surrounded by an extended envelope that can be detected by its excess infrared emission.[8] The presence of a circumstellar disk of ionized gas is a common feature of Be stars such as this.[13]

History and etymology

  • The name originally comes from the Arabic آخر النهر ākhir an-nahr, meaning, "The End of the River". However, it seems that this name originally referred to Theta Eridani instead, which now goes by the similar name Acamar, with the same etymology.

Due to precession, Achernar lay much further south in ancient times than at present, being 7.5 degrees of the south pole around 3400 BCE (decl 82º40') [14] and still lying at declination -76 by around 1500 BCE. Hence the Ancient Egyptians could not have known it. Even in 100 CE its declination was around -67, meaning Ptolemy could not possibly have seen it from Alexandria - whereas Acamar was visible as far north as Crete. So Ptolemy's "end of the river" was certainly Acamar. Achernar was not visible from Alexandria until about 1600 CE.

Achernar will continue to move north in the next few millennia, rising from Crete about 500 years hence before reaching its maximum northern declination between the 8th and 11th millennia, when it will be visible as far north as Germany and southern England.

Other names

In culture


  1. ^ The ten brightest stars in the nighttime sky in terms of apparent magnitude are, from brightest to least brightest, Sirius, Canopus, Alpha Centauri, Arcturus, Vega, Capella, Rigel, Procyon, Achernar and Betelgeuse


  1. ^ a b c d e f van Leeuwen, F. (November 2007), "Validation of the new Hipparcos reduction", Astronomy and Astrophysics 474 (2): 653–664,  
  2. ^ a b c Ducati, J. R. (2002). "VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system". CDS/ADC Collection of Electronic Catalogues 2237: 0.  
  3. ^ a b Samus, N. N.; Durlevich, O. V.; et al. (2009). "VizieR Online Data Catalog: General Catalogue of Variable Stars (Samus+ 2007–2013)". VizieR On-line Data Catalog: B/gcvs. Originally published in: 2009yCat....102025S 1: 02025.  
  4. ^ Nazé, Y. (November 2009), "Hot stars observed by XMM-Newton. I. The catalog and the properties of OB stars", Astronomy and Astrophysics 506 (2): 1055–1064,  
  5. ^ Evans, D. S. (June 20–24, 1966). "The Revision of the General Catalogue of Radial Velocities". In Batten, Alan Henry; Heard, John Frederick. Determination of Radial Velocities and their Applications, Proceedings from IAU Symposium no. 30. University of Toronto: International Astronomical Union. Retrieved 2009-09-10. 
  6. ^ a b c d Kervella, P.; Domiciano de Souza, A.; Bendjoya, Ph. (June 2008), "The close-in companion of the fast rotating Be star Achernar", Astronomy and Astrophysics 484 (1): L13–L16,  
  7. ^ a b c Carciofi, A. C.; et al. (March 2008), "On the Determination of the Rotational Oblateness of Achernar", The Astrophysical Journal 676 (1): L41–L44,  
  8. ^ a b c d Kervella, P.; et al. (January 2009), "The environment of the fast rotating star Achernar. II. Thermal infrared interferometry with VLTI/MIDI", Astronomy and Astrophysics 493 (3): L53–L56,  
  9. ^ "Achernar -- Be Star", SIMBAD (Centre de Données astronomiques de Strasbourg), retrieved 2010-02-16 
  10. ^ Perryman, M. A. C.; Lindegren, L.; Kovalevsky, J.; et al. (July 1997), "The Hipparcos Catalogue", Astronomy and Astrophysics 323: L49–L52,  
  11. ^ Perryman, Michael (2010), The Making of History's Greatest Star Map, Heidelberg: Springer-Verlag,  
  12. ^ See "Achernar the Flattest star" in ‘Sky & Telescope’ P. 20 ‘Newsnotes’, September 2003.
  13. ^ Carciofi, A. C.; et al. (December 2007), "Achernar: Rapid Polarization Variability as Evidence of Photospheric and Circumstellar Activity", The Astrophysical Journal 671 (1): L49–L52,  
  14. ^ calculated by Stellarium 0.13, an open source sky mapping app.
  15. ^ (Chinese) AEEA (Activities of Exhibition and Education in Astronomy) 天文教育資訊網 2006 年 7 月 27 日
  16. ^ Hamacher, Duane W.; Frew, David J. (2010). "An Aboriginal Australian Record of the Great Eruption of Eta Carinae" (PDF). Journal of Astronomical History & Heritage 13 (3): 220–34. 

External links

  • Achernar at
  • Surface temperature and synthetic spectral energy distributions for rotationally deformed stars

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.