Second-order propositional logic

A second-order propositional logic is a propositional logic extended with quantification over propositions. A special case are the logics that allow second-order Boolean propositions, where quantifiers may range either just over the Boolean truth values, or over the Boolean-valued truth functions.

The most widely known formalism is the intuitionistic logic with impredicative quantification, system F. Parigot (1997) showed how this calculus can be extended to admit classical logic.

See also


Parigot, Michel (1997). Proofs of strong normalisation for second order classical natural deduction. Journal of Symbolic Logic 62(4):1461–1479.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.