World Library  
Flag as Inappropriate
Email this Article

Rvachev function

Article Id: WHEBN0002682908
Reproduction Date:

Title: Rvachev function  
Author: World Heritage Encyclopedia
Language: English
Subject: Non-classical logic, Solid modeling, Real analysis, Index of logic articles, WikiProject Mathematics/List of mathematics articles (R)
Collection: Non-Classical Logic, Real Analysis, Types of Functions
Publisher: World Heritage Encyclopedia

Rvachev function

In mathematics, an R-function, or Rvachev function, is a real-valued function whose sign does not change if none of the signs of its arguments change; that is, its sign is determined solely by the signs of its arguments.[1][2]

Interpreting positive values as true and negative values as false, an R-function is transformed into a "companion" Boolean function (the two functions are called friends). For instance, the R-function ƒ(xy) = min(xy) is one possible friend of the logical conjunction (AND). R-functions are used in computer graphics and geometric modeling in the context of implicit surfaces and the function representation. They also appear in certain boundary-value problems, and are also popular in certain artificial intelligence applications, where they are used in pattern recognition.

R-functions were first proposed by Vladimir Logvinovich Rvachev[3] (Russian: Влади́мир Логвинович Рвачёв) in 1963, though the name, "R-functions", was given later on by Ekaterina L. Rvacheva-Yushchenko, in memory of their father, Logvin Fedorovich Rvachev (Russian: Логвин Фёдорович Рвачёв).

See also


  1. ^ V.L. Rvachev, “On the analytical description of some geometric objects”, Reports of Ukrainian Academy of Sciences, vol. 153, no. 4, 1963, pp. 765–767 (in Russian)
  2. ^ V. Shapiro, Semi-analytic geometry with R-Functions, Acta Numerica, Cambridge University Press, 2007, 16: 239-303
  3. ^ 75 years to Vladimir L. Rvachev (75th anniversary biographical tribute)


  • Meshfree Modeling and Analysis, R-Functions (University of Wisconsin)
  • Pattern Recognition Methods Based on Rvachev Functions (Purdue University)
  • Shape Modeling and Computer Graphics with Real Functions
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.