World Library  
Flag as Inappropriate
Email this Article

Complex dimension

Article Id: WHEBN0002783513
Reproduction Date:

Title: Complex dimension  
Author: World Heritage Encyclopedia
Language: English
Subject: Dimension, Andreotti–Frankel theorem, Moishezon manifold, Complex torus, Reality structure
Collection: Algebraic Geometry, Complex Manifolds, Dimension
Publisher: World Heritage Encyclopedia

Complex dimension

In mathematics, complex dimension usually refers to the dimension of a complex manifold M, or a complex algebraic variety V.[1] If the complex dimension is d, the real dimension will be 2d.[2] That is, the smooth manifold M has dimension 2d; and away from any singular point V will also be a smooth manifold of dimension 2d.

However, for a real algebraic variety (that is a variety defined by equations with real coefficients), its dimension refers commonly to its complex dimension, and its real dimension refers to the maximum of the dimensions of the manifolds contained in the set of its real points. The real dimension is not greater than the dimension, and equals it if the variety is irreducible and has real points that are nonsingular. For example, the equation x^2+y^2+z^2=0 defines a variety of (complex) dimension 2 (a surface), but of real dimension 0 — it has only one real point, (0, 0, 0), which is singular.[3]

The same points apply to codimension. For example a smooth complex hypersurface in complex projective space of dimension n will be a manifold of dimension 2(n − 1). A complex hyperplane does not separate a complex projective space into two components, because it has real codimension 2.


  1. ^ Cavagnaro, Catherine; Haight, William T., II (2001), Dictionary of Classical and Theoretical Mathematics, CRC Press, p. 22,  .
  2. ^ Marsden, Jerrold E.; Ratiu, Tudor S. (1999), Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, Texts in Applied Mathematics 17, Springer, p. 152,  .
  3. ^ Bates, Daniel J.; Hauenstein, Jonathan D.; Sommese, Andrew J.; Wampler, Charles W. (2013), Numerically Solving Polynomial Systems with Bertini, Software, Environments, and Tools 25, SIAM, p. 225,  .
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.