World Library  
Flag as Inappropriate
Email this Article

Constructive set theory

Article Id: WHEBN0005042360
Reproduction Date:

Title: Constructive set theory  
Author: World Heritage Encyclopedia
Language: English
Subject: Intuitionism, Constructivism (mathematics), Non-classical logic, Axiom schema of replacement, Set theory
Collection: Constructivism (Mathematics), Intuitionism, Systems of Set Theory
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Constructive set theory

Constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. That is, it uses the usual first-order language of classical set theory, and although of course the logic is constructive, there is no explicit use of constructive types. Rather, there are just sets, thus it can look very much like classical mathematics done on the most common foundations, namely the Zermelo–Fraenkel axioms (ZFC).

Contents

  • Intuitionistic Zermelo–Fraenkel 1
    • Predicativity 1.1
  • Myhill's constructive set theory 2
  • Aczel's constructive Zermelo–Fraenkel 3
  • Interpretability in type theory 4
  • Interpretability in category theory 5
  • References 6
  • Further reading 7
  • External links 8

Intuitionistic Zermelo–Fraenkel

In 1973, John Myhill proposed a system of set theory based on intuitionistic logic[1] taking the most common foundation, ZFC, and throwing away the axiom of choice (AC) and the law of the excluded middle (LEM), leaving everything else as is. However, different forms of some of the ZFC axioms which are equivalent in the classical setting are inequivalent in the constructive setting, and some forms imply LEM.

The system, which has come to be known as IZF, or Intuitionistic Zermelo–Fraenkel (ZF refers to ZFC without the axiom of choice), has the usual axioms of extensionality, pairing, union, infinity, separation and power set. The axiom of regularity is stated in the form of an axiom schema of set induction. Also, while Myhill used the axiom schema of replacement in his system, IZF usually stands for the version with collection

While the axiom of replacement requires the relation φ to be a function over the set A (that is, for every x in A there is associated exactly one y), the axiom of collection does not: it merely requires there be associated at least one y, and it asserts the existence of a set which collects at least one such y for each such x. The axiom of regularity as it is normally stated implies LEM, whereas the form of set induction does not. The formal statements of these two schemata are:

\forall A \; ([\forall x \in A \; \exists y \; \phi(x,y)] \to \exists B \; \forall x \in A \; \exists y \in B \; \phi(x,y))

[\forall y \; ([\forall x \in y \; \phi(x)] \to \phi(y))] \to \forall y \; \phi(y)

Adding LEM back to IZF results in ZF, as LEM makes collection equivalent to replacement and set induction equivalent to regularity. Even without LEM, IZF's proof-theoretical power equals that of ZF.

Predicativity

While IZF is based on constructive rather than classical logic, it is considered impredicative. It allows formation of sets using the axiom of separation with any proposition, including ones which contain quantifiers which are not bounded. Thus new sets can be formed in terms of the universe of all sets. Additionally the power set axiom implies the existence of a set of truth values. In the presence of LEM, this set exists and has two elements. In the absence of it, the set of truth values is also considered impredicative.

Myhill's constructive set theory

The subject was begun by John Myhill to provide a formal foundation for Errett Bishop's program of constructive mathematics. As he presented it, Myhill's system CST is a constructive first-order logic with three sorts: natural numbers, functions, and sets. The system is:

Aczel's constructive Zermelo–Fraenkel

Peter Aczel's constructive Zermelo-Fraenkel,[2] or CZF, is essentially IZF with its impredicative features removed. It strengthens the collection scheme, and then drops the impredicative power set axiom and replaces it with another collection scheme. Finally the separation axiom is restricted, as in Myhill's CST. This theory has a relatively simple interpretation in a version of constructive type theory and has modest proof theoretic strength as well as a fairly direct constructive and predicative justification, while retaining the language of set theory. Adding LEM to this theory also recovers full ZF.

The collection axioms are:

Strong collection schema: This is the constructive replacement for the axiom schema of replacement. It states that if φ is a binary relation between sets which is total over a certain domain set (that is, it has at least one image of every element in the domain), then there exists a set which contains at least one image under φ of every element of the domain, and only images of elements of the domain. Formally, for any formula φ:

\forall a ((\forall x \in a \; \exists y \; \phi(x,y)) \to \exists b \; (\forall x \in a \; \exists y \in b \; \phi(x,y)) \wedge (\forall y \in b \; \exists x \in a \; \phi(x,y)))

Subset collection schema: This is the constructive version of the power set axiom. Formally, for any formula φ:

\forall a,b \; \exists u \; \forall z ((\forall x \in a \; \exists y \in b \; \phi(x,y,z)) \to \exists v \in u \; (\forall x \in a \; \exists y \in v \; \phi(x,y,z)) \wedge (\forall y \in v \; \exists x \in a \; \phi(x,y,z)))

This is equivalent to a single and somewhat clearer axiom of fullness: between any two sets a and b, there is a set c which contains a total subrelation of any total relation between a and b that can be encoded as a set of ordered pairs. Formally:

\forall a,b \; \exists c \subseteq P(a,b) \; \forall R \in P(a,b) \; \exists S \in c \; S \subseteq R

where the references to P(a,b) are defined by:

R \in P(a,b) \iff (\forall u \in R \; \exists x \in a \; \exists y \in b \; \langle x,y \rangle = u) \wedge (\forall x \in a \; \exists y \in b \; \langle x,y \rangle \in R)

c \subseteq P(a,b) \iff \forall R \in c \; R \in P(a,b)

and some set-encoding of the ordered pair is assumed.

The axiom of fullness implies CST's axiom of exponentiation: given two sets, the collection of all total functions from one to the other is also in fact a set.

The remaining axioms of CZF are: the axioms of extensionality, pairing, union, and infinity are the same as in ZF; and set induction and predicative separation are the same as above.

Interpretability in type theory

In 1977 Aczel showed that CZF can be interpreted in Martin-Löf type theory,[3] (using the now consecrated propositions-as-types approach) providing what is now seen a standard model of CZF in type theory.[4] In 1989 Ingrid Lindström showed that non-well-founded sets obtained by replacing the axiom of foundation in CZF with Aczel's anti-foundation axiom (CZFA) can also be interpreted in Martin-Löf type theory.[5]

Interpretability in category theory

Presheaf models for constructive set theory were introduced by Nicola Gambino in 2004. They are analogous to the Presheaf models for intuitionistic set theory developed by Dana Scott in the 1980s (which remained unpublished).[6][7]

References

  1. ^ Myhill, "Some properties of Intuitionistic Zermelo-Fraenkel set theory", Proceedings of the 1971 Cambridge Summer School in Mathematical Logic (Lecture Notes in Mathematics 337) (1973) pp 206-231
  2. ^ Peter Aczel and Michael Rathjen, Notes on Constructive Set Theory, Reports Institut Mittag-Leffler, Mathematical Logic - 2000/2001, No. 40
  3. ^ Aczel, Peter: 1978. The type theoretic interpretation of constructive set theory. In: A. MacIntyre et al. (eds.), Logic Colloquium '77, Amsterdam: North-Holland, 55–66.
  4. ^ Rathjen, M. (2004), "Predicativity, Circularity, and Anti-Foundation", in Link, Godehard, One Hundred Years of Russell ́s Paradox: Mathematics, Logic, Philosophy (PDF), Walter de Gruyter,  
  5. ^ Lindström, Ingrid: 1989. A construction of non-well-founded sets within Martin-Löf type theory. Journal of Symbolic Logic 54: 57–64.
  6. ^ Gambino, N. (2005). "PRESHEAF MODELS FOR CONSTRUCTIVE SET THEORIES". In Laura Crosilla and Peter Schuster. From Sets and Types to Topology and Analysis (PDF). pp. 62–96.  
  7. ^ Scott, D. S. (1985). Category-theoretic models for Intuitionistic Set Theory. Manuscript slides of a talk given at Carnegie-Mellon University

Further reading

  •  
  • Aczel, P. and Rathjen, M. (2001). Notes on constructive set theory. Technical Report 40, 2000/2001. Mittag-Leffler Institute, Sweden.

External links

  • Laura Crosilla, Set Theory: Constructive and Intuitionistic ZF, Stanford Encyclopedia of Philosophy, Feb 20, 2009
  • Benno van den Berg, Constructive set theory – an overview, slides from Heyting dag, Amsterdam, 7 September 2012
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.