World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0002114155
Reproduction Date:

Title: Duoprism  
Author: World Heritage Encyclopedia
Language: English
Subject: Runcinated 16-cell honeycomb, Runcinated 24-cell honeycomb, Grand antiprism, Uniform 4-polytope, Uniform 5-polytope
Publisher: World Heritage Encyclopedia


Set of uniform p-q duoprisms
Type Prismatic uniform polychoron
Schläfli symbol {p}×{q}
Coxeter-Dynkin diagram
Cells p,q-gonal prisms,
q p-gonal prisms
Faces pq squares,
p q-gons,
q p-gons
Edges 2pq
Vertices pq
Vertex figure
Symmetry [p,2,q], order 4pq
Dual p,q-duopyramid
Properties convex, vertex-uniform
Set of uniform p-p duoprisms
Type Prismatic uniform polychoron
Schläfli symbol {p}×{p}
Coxeter-Dynkin diagram
Cells 2p p-gonal prisms
Faces p2 squares,
2p p-gons
Edges 2p2
Vertices p2
Symmetry = [2p,2+,2p], order 8p2
Dual p-p duopyramid
Properties convex, vertex-uniform, Facet-transitive
A close up inside the 23-29 duoprism projected onto a 3-sphere, and perspective projected to 3-space. As m and n become large, a duoprism approaches the geometry of duocylinder just like a p-gonal prism approaches a cylinder.

In geometry of 4 dimensions or higher, a duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are 2 (polygon) or higher.

The lowest-dimensional duoprisms exist in 4-dimensional space as polychora (4-polytopes) being the Cartesian product of two polygons in 2-dimensional Euclidean space. More precisely, it is the set of points:

P_1 \times P_2 = \{ (x,y,z,w) | (x,y)\in P_1, (z,w)\in P_2 \}

where P1 and P2 are the sets of the points contained in the respective polygons. Such a duoprism is convex if both bases are convex, and is bounded by prismatic cells.


  • Nomenclature 1
  • Example 16-16 duoprism 2
  • Geometry of 4-dimensional duoprisms 3
  • Nets 4
    • Perspective projections 4.1
    • Orthogonal projections 4.2
  • Related polytopes 5
    • Duoantiprism 5.1
    • k_22 polytopes 5.2
  • See also 6
  • Notes 7
  • References 8
  • External links 9


Four-dimensional duoprisms are considered to be prismatic polychora. A duoprism constructed from two regular polygons of the same edge length is a uniform duoprism.

A duoprism made of n-polygons and m-polygons is named by prefixing 'duoprism' with the names of the base polygons, for example: a triangular-pentagonal duoprism is the Cartesian product of a triangle and a pentagon.

An alternative, more concise way of specifying a particular duoprism is by prefixing with numbers denoting the base polygons, for example: 3,5-duoprism for the triangular-pentagonal duoprism.

Other alternative names:

  • q-gonal-p-gonal prism
  • q-gonal-p-gonal double prism
  • q-gonal-p-gonal hyperprism

The term duoprism is coined by Conway proposed a similar name proprism for product prism.

Example 16-16 duoprism

Schlegel diagram

Projection from the center of one 16-gonal prism, and all but one of the opposite 16-gonal prisms are shown.

The two sets of 16-gonal prisms are shown. The top and bottom faces of the vertical cylinder are connected when folded together in 4D.

Geometry of 4-dimensional duoprisms

A 4-dimensional uniform duoprism is created by the product of a regular n-sided polygon and a regular m-sided polygon with the same edge length. It is bounded by n m-gonal prisms and m n-gonal prisms. For example, the Cartesian product of a triangle and a hexagon is a duoprism bounded by 6 triangular prisms and 3 hexagonal prisms.

  • When m and n are identical, the resulting duoprism is bounded by 2n identical n-gonal prisms. For example, the Cartesian product of two triangles is a duoprism bounded by 6 triangular prisms.
  • When m and n are identically 4, the resulting duoprism is bounded by 8 square prisms (cubes), and is identical to the tesseract.

The m-gonal prisms are attached to each other via their m-gonal faces, and form a closed loop. Similarly, the n-gonal prisms are attached to each other via their n-gonal faces, and form a second loop perpendicular to the first. These two loops are attached to each other via their square faces, and are mutually perpendicular.

As m and n approach infinity, the corresponding duoprisms approach the duocylinder. As such, duoprisms are useful as non-quadric approximations of the duocylinder.














Perspective projections

A cell-centered perspective projection makes a duoprism look like a torus, with two sets of orthogonal cells, p-gonal and q-gonal prisms.
Schlegel diagrams
6-prism 6-6 duoprism
A hexagonal prism, projected into the plane by perspective, centered on a hexagonal face, looks like a double hexagon connected by (distorted) squares. Similarly a 6-6 duoprism projected into 3D approximates a torus, hexagonal both in plan and in section.

The p-q duoprisms are identical to the q-p duoprisms, but look different in these projections because they are projected in the center of different cells.

Schlegel diagrams





































Orthogonal projections

Vertex-centered orthogonal projections of p-p duoprisms project into [2n] symmetry for odd degrees, and [n] for even degrees. There are n vertices projected into the center. For 4,4, it represents the A3 Coxeter plane of the tesseract. The 5,5 projection is identical to the 3D rhombic triacontahedron.
Orthogonal projection wireframes of p-p duoprisms
3-3 5-5 7-7 9-9
[3] [6] [5] [10] [7] [14] [9] [18]
4-4 (tesseract) 6-6 8-8 10-10
[4] [8] [6] [12] [8] [16] [10] [20]

Related polytopes

A stereographic projection of a rotating duocylinder, divided into a checkerboard surface of squares from the {4,4|n} skew polyhedron

The regular skew polyhedron, {4,4|n}, exists in 4-space as the n2 square faces of a n-n duoprism, using all 2n2 edges and n2 vertices. The 2n n-gonal faces can be seen as removed. (skew polyhedra can be seen in the same way by a n-m duoprism, but these are not regular.)


p-q duoantiprism vertex figure, a gyrobifastigium

Like the antiprisms as alternated prisms, there is a set of 4-dimensional duoantiprisms: polychora that can be created by an alternation operation applied to a duoprism. The alternated vertices create nonregular tetrahedral cells, except for the special case, the 4-4 duoprism (tesseract) which creates the uniform (and regular) 16-cell. The 16-cell is the only convex uniform duoantiprism.

The duoprisms , t0,1,2,3{p,2,q}, can be alternated into , ht0,1,2,3{p,2,q}, the "duoantiprisms", which cannot be made uniform in general. The only convex uniform solution is the trivial case of p=q=2, which is a lower symmetry construction of the tesseract , t0,1,2,3{2,2,2}, with its alternation as the 16-cell, , ht0,1,2,3{2,2,2}.

The only nonconvex uniform solution is p=5, q=5/3, ht0,1,2,3{5,2,5/3}, , constructed from 10 pentagonal antiprisms, 10 pentagrammic crossed-antiprisms, and 50 tetrahedra, known as the great duoantiprism (gudap).[1][2]

k_22 polytopes

The 3-3 duoprism, -122, is first in a dimensional series of uniform polytopes, expressed by Coxeter as k22 series. The 3-3 duoprism is the vertex figure for the second, the birectified 5-simplex. The fourth figure is a Euclidean honeycomb, 222, and the final is a paracompact hyperbolic honeycomb, 322, with Coxeter group [32,2,3], {\bar{T}}_7. Each progressive uniform polytope is constructed from the previous as its vertex figure.
k22 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 4 5 6 7 8
A22 A5 E6 {\tilde{E}}_{6}=E6+ {\bar{T}}_7=E6++
Order 72 1440 103,680
Name −122 022 122 222 322

See also


  1. ^ Jonathan Bowers - Miscellaneous Uniform Polychora 965. Gudap
  2. ^ Animation of cross sections


  • Regular Polytopes, H. S. M. Coxeter, Dover Publications, Inc., 1973, New York, p. 124.
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999, ISBN 0-486-40919-8 (Chapter 5: Regular Skew Polyhedra in three and four dimensions and their topological analogues)
    • Coxeter, H. S. M. Regular Skew Polyhedra in Three and Four Dimensions. Proc. London Math. Soc. 43, 33-62, 1937.
  • The Fourth Dimension Simply Explained, Henry P. Manning, Munn & Company, 1910, New York. Available from the University of Virginia library. Also accessible online: The Fourth Dimension Simply Explained—contains a description of duoprisms (double prisms) and duocylinders (double cylinders). Googlebook
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 26)
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
  • Olshevsky, George, Duoprism at Glossary for Hyperspace.
    • Olshevsky, George, Cartesian product at Glossary for Hyperspace.
    • Catalogue of Convex Polychora, section 6, George Olshevsky.

External links

  • The Fourth Dimension Simply Explained—describes duoprisms as "double prisms" and duocylinders as "double cylinders"
  • Polygloss - glossary of higher-dimensional terms
  • Exploring Hyperspace with the Geometric Product
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.