World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000292344
Reproduction Date:

Title: Flavone  
Author: World Heritage Encyclopedia
Language: English
Subject: Phenols, Tannin, List of phytochemicals in food, List of compounds with carbon number 15, Cyclopia (plant)
Publisher: World Heritage Encyclopedia


Flavones (flavus = yellow), are a class of flavonoids based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one) shown on the right.

Natural flavones include Apigenin (4',5,7-trihydroxyflavone), Luteolin (3',4',5,7-tetrahydroxyflavone) and Tangeritin (4',5,6,7,8-pentamethoxyflavone), chrysin(5,7-OH), 6-hydroxyflavone, baicalein (5,6,7-trihydroxyflavone), scutellarein (5,6,7,4'-tetrahydroxyflavone), wogonin (5,7 -OH, 8 -OCH3). Synthetic flavones are Diosmin and Flavoxate.

Metabolism in humans

The enzyme encoded by the gene UGT1A8 has glucuronidase activity with many substrates including flavones.[1]

Intake and putative beneficial effects

Flavones are mainly found in cereals and herbs. In the West, the estimated daily intake of flavones is in the range 20–50 mg per day.[2] In recent years, scientific and public interest in flavones has grown enormously due to their putative beneficial effects against atherosclerosis, osteoporosis, diabetes mellitus and certain cancers.[3] Flavones intake in the form of dietary supplements and plant extracts has been steadily increasing.

Natural dietary flavones, found in parsley, celery, and citrus peels, reactivate DLC1 (Deleted in Liver Cancer 1) expression in breast cancer cell lines which have decreased DLC1 expression due to promoter hypermethylation, and may potentially be used as an anti-cancer agent for prevention and therapy of breast and other DLC1 downregulated cancers.[4]

Drug interactions

Flavones have effects on CYP (P450) activity [5][6] which are enzymes that metabolize most drugs in the body.

Organic chemistry

In organic chemistry several methods exist for the synthesis of flavones:

Another method is the dehydrative cyclization of certain 1,3-diaryl diketones [7]

this particular study making use of an ionic liquid solvent and microwave irradiation.

Wessely–Moser rearrangement

The Wessely–Moser rearrangement (1930)[8] has been an important tool in structure elucidation of flavonoids. It involves the conversion of 5,7,8-trimethoxyflavone into 5,6,7-trihydroxyflavone on hydrolysis of the methoxy groups to phenol groups. It also has synthetic potential for example:[9]

This rearrangement reaction takes place in several steps: A ring opening to the diketone, B bond rotation with formation of a favorable acetylacetone-like phenyl-ketone interaction and C hydrolysis of two methoxy groups and ring closure.

External links

  • Medical Subject Headings (MeSH)


This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.