World Library  
Flag as Inappropriate
Email this Article

Macula of retina

Article Id: WHEBN0000252035
Reproduction Date:

Title: Macula of retina  
Author: World Heritage Encyclopedia
Language: English
Subject: Human eye, Eye, Amsler grid, Mail (armour), Visual field test
Collection: Human Eye Anatomy
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Macula of retina

Macula of retina
Human eye cross-sectional view, with macula near center.
Details
Latin macula lutea
Identifiers
MeSH Macula+Lutea
Dorlands
/Elsevier
m_01/12509252
Anatomical terminology
Fundus photographs of the right eye (left image) and left eye (right image), seen from front so that left in each image is to the person's right. The gaze is into the camera, so in each picture the macula is in the center of the image, and the optic disk is located towards the nose.

The macula or macula lutea (from Latin macula, "spot" + lutea, "yellow") is an oval-shaped pigmented area near the center of the retina of the human eye. It has a diameter of around 5.5 mm. The macula is subdivided into the umbo, foveola, foveal avascular zone (FAZ), fovea, parafovea, and perifovea areas.[1] After death or enucleation (removal of the eye) the macula appears yellow, a color that is not visible in the living eye except when viewed with light from which red has been filtered. [2] The anatomical macula at 5.5 mm is much larger than the clinical macula which, at 1.5 mm, corresponds to the anatomical fovea.[3][4][5] The clinical macula is seen when viewed from the pupil, as in ophthalmoscopy or retinal photography. The anatomical macula is defined histologically in terms of having two or more layers of ganglion cells.[6]

Near its center is the fovea, a small pit that contains the largest concentration of cone cells in the eye and is responsible for central, high-resolution vision. The umbo is the center of the foveola which is located at the centre of fovea.

Contents

  • Structure 1
    • Color 1.1
    • Regions 1.2
  • Function 2
  • Clinical significance 3
  • See also 4
  • References 5
  • Additional images 6
  • External links 7

Structure

schematic diagram of the macula lutea of the retina, showing perifovea, parafovea, fovea, and clinical macula
photograph of the retina of the human eye, with overlay diagrams showing the positions and sizes of the macula, fovea, and optic disc

Color

Because the macula is yellow in colour it absorbs excess blue and ultraviolet light that enter the eye, and acts as a natural sunblock (analogous to sunglasses) for this area of the retina. The yellow color comes from its content of lutein and zeaxanthin, which are yellow xanthophyll carotenoids, derived from the diet. Zeaxanthin predominates at the macula, while lutein predominates elsewhere in the retina. There is some evidence that these carotenoids protect the pigmented region from some types of macular degeneration.

Regions

  • Fovea - 1.55 mm
  • Foveal Avascular Zone (FAZ) - 0.5 mm
  • Foveola - 0.35 mm
  • Umbo - 0.15 mm

Function

Structures in the macula are specialized for high-acuity vision. Within the macula are the fovea and foveola that both contain a high density of cones (photoreceptors with high acuity).

Clinical significance

Whereas loss of peripheral vision may go unnoticed for some time, damage to the macula will result in loss of central vision, which is usually immediately obvious. The progressive destruction of the macula is a disease known as macular degeneration and can sometimes lead to the creation of a macular hole. Macular holes are rarely caused by trauma, but if a severe blow is delivered it can burst the blood vessels going to the macula, destroying it.

Visual input from the macula occupies a substantial portion of the brain's visual capacity. As a result, some forms of visual field loss can occur without involving the macula; this is termed macular sparing. (For example, visual field testing might demonstrate homonymous hemianopsia with macular sparing.)

In the case of occipitoparietal ischemia owing to occlusion of elements of either posterior cerebral artery, patients may display cortical blindness (which, rarely, can involve blindness that the patient denies having, as seen in Anton's Syndrome), yet display sparing of the macula. This selective sparing is due to the collateral circulation offered to macular tracts by the middle cerebral artery.[7] Neurological examination that confirms macular sparing can go far in representing the type of damage mediated by an infarct, in this case, indicating that the caudal visual cortex (which is the principal recipient of macular projections of the optic nerve) has been spared. Further, it indicates that cortical damage rostral to, and including, lateral geniculate nucleus is an unlikely outcome of the infarction, as too much of the lateral geniculate nucleus is, proportionally, devoted to macular-stream processing.[8]

See also

References

  1. ^ "Interpretation of Stereo Ocular Angiography : Retinal and Choroidal Anatomy". Project Orbis International. Retrieved 11 October 2014. 
  2. ^ Britton, George;  
  3. ^ Yanoff, Myron (2009). Ocular Pathology. Elsevier Health Sciences. p. 393.  
  4. ^ Small, R.G. (15 August 1994). The Clinical Handbook of Ophthalmology. CRC Press. p. 134.  
  5. ^  
  6. ^ Remington, Lee Ann (29 July 2011). Clinical Anatomy of the Visual System. Elsevier Health Sciences. pp. 314–5.  
  7. ^ Helseth,, Erek. "Posterior Cerebral Artery Stroke". Medscape Reference. Medscape. Retrieved 23 October 2011. 
  8. ^ Siegel, Allan; Sapru, Hreday N. (2006). Betty Sun, ed. Essential Neuroscience (First Revised ed.). Baltimore, Maryland: Lippincott Williams & Wilkins.  

Additional images

External links

Media related to at Wikimedia Commons

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.