In cell biology, phagocytosis is the process of engulfing a solid particle by a phagocyte or a protist to form an internal phagosome (Template:Etymology). Phagocytosis was revealed by Élie Metchnikoff in 1882. Phagocytosis is a specific form of endocytosis involving the vesicular internalization of solids such as bacteria, and is, therefore, distinct from other forms of endocytosis such as the vesicular internalization of various liquids. Phagocytosis is involved in the acquisition of nutrients for some cells, and, in the immune system, it is a major mechanism used to remove pathogens and cell debris. Bacteria, dead tissue cells, and small mineral particles are all examples of objects that may be phagocytized.

The process is homologous to eating only at the level of single-celled organisms; in multicellular animals, the process has been adapted to eliminate debris and pathogens, as opposed to taking in fuel for cellular processes, except in the case of the animal Trichoplax.

In immune system

Further information: Phagocyte

Phagocytosis in mammalian immune cells is activated by attachment to Pathogen-associated molecular patterns (PAMPS), which leads to NF-κB activation. Opsonins such as C3b and antibodies can act as attachment sites and aid phagocytosis of pathogens.[1]

Engulfment of material is facilitated by the actin-myosin contractile system. The phagosome of ingested material is then fused with the lysosome, leading to degradation.

Degradation can be oxygen-dependent or oxygen-independent.

  • Oxygen-dependent degradation depends on NADPH and the production of reactive oxygen species. Hydrogen peroxide and myeloperoxidase activate a halogenating system, which leads to the creation of hypochlorite and the destruction of bacteria.[2]
  • Oxygen-independent degradation depends on the release of granules, containing proteolytic enzymes such as defensins, lysozyme, and cationic proteins. Other antimicrobial peptides are present in these granules, including lactoferrin, which sequesters iron to provide unfavourable growth conditions for bacteria.

It is possible for cells other than dedicated phagocytes (such as dendritic cells) to engage in phagocytosis.[3]

In apoptosis

Following apoptosis, the dying cells need to be taken up into the surrounding tissues by macrophages in a process called efferocytosis. One of the features of an apoptotic cell is the presentation of a variety of intracellular molecules on the cell surface, such as calreticulin, phosphatidylserine (From the inner layer of the plasma membrane), annexin A1, and oxidised LDL. These molecules are recognised by receptors on the cell surface of the macrophage such as the phosphatidylserine receptor or by soluble (free floating) receptors such as thrombospondin 1, Gas-6, and MFG-E8, which themselves then bind to other receptors on the macrophage such as CD36 and alpha-v beta-3 integrin. Defects in apoptotic cell clearance is usually associated with impaired phagocytosis of macropghages. Accumulation of apoptotic cell remnants often causes autoimmune disorders, thus pharmacological potentiation of phagocytosis has a medical potential in treatment of certain forms of autoimmune disorders.[4][5][6][7]

Additional information on phagocytosis of apoptotic cells could be found in the book: “Phagocytosis of dying cells: from molecular mechanisms to human diseases” (Eds DV Krysko and P Vandenabeele, 2009, Springer).

In protists

In many protists, phagocytosis is used as a means of feeding, providing part or all of their nourishment. This is called phagotrophic nutrition, as distinguished from osmotrophic nutrition, which takes place by absorption.

  • In some, such as amoeba, phagocytosis takes place by surrounding the target object with pseudopods, as in animal phagocytes. In humans, Entamoeba histolytica can phagocytose red blood cells.[8] This process is known as "erythrophagocystosis", and is considered the only reliable way to distinguish Entamoeba histolytica from noninvasive species such as Entamoeba dispar.[9]
  • Ciliates also engage in phagocytosis.[10] In ciliates there is a specialized groove or chamber in the cell where phagocytosis takes place, called the cytostome or mouth.

The resulting phagosome may be merged with lysosomes containing digestive enzymes, forming a phagolysosome. The food particles will then be digested, and the released nutrients are diffused or transported into the cytosol for use in other metabolic processes.

Mixotrophy can involve phagotrophic nutrition and phototrophic nutrition.[11]

See also


External links

  • Medical Subject Headings (MeSH)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.