World Library  
Flag as Inappropriate
Email this Article

Tetrahedral number

Article Id: WHEBN0000509120
Reproduction Date:

Title: Tetrahedral number  
Author: World Heritage Encyclopedia
Language: English
Subject: 4000 (number), Figurate number, Pentagonal pyramidal number, Triangular number, Octahedral number
Publisher: World Heritage Encyclopedia

Tetrahedral number

A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers.

A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The nth tetrahedral number is the sum of the first n triangular numbers.

The first ten tetrahedral numbers are:

1, 4, 10, 20, 35, 56, 84, 120, 165, 220, … (sequence A000292 in OEIS)


  • Formula 1
  • Geometric interpretation 2
  • Properties 3
  • Popular Culture 4
  • See also 5
  • References 6
  • External links 7


The formula for the n-th tetrahedral number is represented by the 3rd rising factorial of n divided by the factorial of 3:

T_n={n(n+1)(n+2)\over 6} = {n^{\overline 3}\over 3!}

The tetrahedral numbers can also be represented as binomial coefficients:


Tetrahedral numbers can therefore be found in the fourth position either from left or right in Pascal's triangle.

Geometric interpretation

Tetrahedral numbers can be modelled by stacking spheres. For example, the fifth tetrahedral number (T5 = 35) can be modelled with 35 billiard balls and the standard triangular billiards ball frame that holds 15 balls in place. Then 10 more balls are stacked on top of those, then another 6, then another three and one ball at the top completes the tetrahedron.

When order-n tetrahedra built from Tn spheres are used as a unit, it can be shown that a space tiling with such units can achieve a densest sphere packing as long as n ≤ 4.[1]


  • A. J. Meyl proved in 1878 that only three tetrahedral numbers are also perfect squares, namely:
    T1 = 1² = 1
    T2 = 2² = 4
    T48 = 140² = 19600.
  • The infinite sum of tetrahedral numbers' reciprocals is 3/2, which can be derived using telescoping series:
    \!\ \sum_{n=1}^{\infty} \frac{6}{n(n+1)(n+2)} = \frac{3}{2}.
  • The tetrahedron with basic length 4 (summing up to 20) can be looked at as the 3-dimensional analogue of the tetractys, the 4th triangular number (summing up to 10).
  • The parity of tetrahedral numbers follows the repeating pattern odd-even-even-even.
  • An observation of tetrahedral numbers:
    T5 = T4 + T3 + T2 + T1
  • Numbers that are both triangular and tetrahedral must satisfy the binomial coefficient equation:
  • The only numbers that are both Tetrahedral and Triangular numbers are (sequence A027568 in OEIS):
    Te1 = Tr1 = 1
    Te3 = Tr4 = 10
    Te8 = Tr15 = 120
    Te20 = Tr55 = 1540
    Te34 = Tr119 = 7140

Popular Culture

Te12 = 364, which is the total number of gifts "my true love sent to me" during the course of all 12 verses of the carol, The Twelve Days of Christmas [2]

See also


  1. ^
  2. ^

External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.