World Library  
Flag as Inappropriate
Email this Article

Artificial gills (human)

Article Id: WHEBN0002551796
Reproduction Date:

Title: Artificial gills (human)  
Author: World Heritage Encyclopedia
Language: English
Subject: Membrane technology, Artificial gills, Diving medicine, Fraction of inspired oxygen, Gill (disambiguation)
Collection: Diving Medicine, Membrane Technology, Underwater Breathing Apparatus
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Artificial gills (human)

Artificial gills are devices to let a human take in oxygen from surrounding water. This technology neither exists nor is in the early stages of development.

Contents

  • Methods 1
  • Like-A-Fish 2
  • See also 3
  • References 4
  • External links 5

Methods

Several potential methods exist for the development of artificial gills. One proposed method is the use of liquid breathing with a membrane oxygenator to solve the problem of carbon dioxide retention, the major limiting factor in liquid breathing.[1][2] It is thought that a system such as this would allow for diving without risk of decompression sickness.[3]

They are generally thought to be unwieldy and bulky, because of the massive amount of water that would have to be processed to extract enough oxygen to supply an active diver, as an alternative to a scuba set.

An average diver with a fully closed-circuit rebreather needs 1 liter (roughly 1 quart) of oxygen per minute.[4] As a result, at least 192 litres (51 US gal) of sea water per minute would have to be passed through the system, and this system would not work in anoxic water.

These calculations are based on the dissolved oxygen content of water. Other methods involve electrolysing water to produce gaseous hydrogen and gaseous oxygen. A diver needs, on average, about 1 mole of oxygen gas per hour. Water contains 88% oxygen by weight, and as two molecules of water are necessary to produce one molecule of diatomic oxygen gas, about 36 grams of water are needed to produce 32 grams of oxygen or one mole of oxygen gas. Assuming 1.0 grams/ml as the density of water, 36 ml (about 2.5 tablespoons) of water needs to be converted to oxygen per hour, assuming 100% efficiency. The reason for this large difference is the specific volume of a gas vs. a liquid. Natural gills work because nearly all animals with gills are thermoconformers, so they need much less oxygen than a thermoregulator of the same size.[5]

Another potential source of oxygen generation is plastron respiration.[6] A foam with hydrophobic surfaces immersed in water becomes superhydrophobic, which provides a water-air interface across which oxygen can diffuse into the foam. In nature, this method is used by some aquatic insects (such as water boatman, Notonecta) and spiders (such as Dolomedes triton) to breathe underwater without a gill. This method was experimentally proven by professor Ed Cussler on his dog.[7]

Like-A-Fish

Like-A-Fish Technologies, an Israeli business founded by Alan Bodner in 2001, is currently testing an artificial gills prototype.[8] Like-A-Fish's technology uses a centrifuge causing lower pressure at the center, where dissolved air comes out of the water.[9]

As with any artificial gill using dissolved oxygen, air from a huge volume of seawater would have to be extracted to provide enough for breathing, requiring large amounts of power for pumping. Therefore, a key issue remaining is battery life. Currently, a 1-kg battery would only last for one hour,[8] whereas a regular scuba tank can last longer (depending on depth). Regular scuba gear is also far simpler, and thus safer, with less to go wrong.

Like-A-Fish currently holds patents in Europe for its system.[10][11]

See also

References

  1. ^ Landé AJ, Claff CL, Sonstegard L, Roberts R, Perry C, Lillehei CW (1970). "An extracorporeal artificial gill utilizing liquid fluorocarbon". Fed. Proc. 29 (5): 1805–8.  
  2. ^ Landé, AJ (2006). "2"SEQUENCED, HEMOGLOBIN BASED ARTIFICIAL GILLS SYNTHETIC GILL SUPPORTS DIVER'S OR CLIMBER'S BREATHING BY CONCENTRATING O2 FROM SEAWATER OR FROM THIN AIR AT ALTITUDE, AND VENTING CO. Undersea and Hyperbaric Medicine (Annual scientific meeting abstract) ( 
  3. ^ Landé, AJ (2006). "ARTIFICIAL GILL COMPLEMENTS LIQUID BREATHING FOR DIVING TO GREAT DEPTHS, WITHOUT BEING THREATENED BY THE BENDS". Undersea and Hyperbaric Medicine (Annual scientific meeting abstract) ( 
  4. ^ Knafelc, ME. "Oxygen Consumption Rate of Operational Underwater Swimmers.".  
  5. ^ Why don't people have gills?
  6. ^ Underwater breathing: the mechanics of plastron respiration
  7. ^ Plastron respiration: Extracting oxygen from water
  8. ^ a b Lakshmi Sandhana (2006-01-31). "'"Inventor develops 'artificial gills. BBC News. Archived from the original on 25 August 2007. Retrieved 2007-09-14. 
  9. ^ Iddo Genuth, Tomer Yaffe (2005-12-14). "Like A Fish - Revolutionary Underwater Breathing System". IsraCast. Archived from the original on 11 September 2007. Retrieved 2007-09-14. 
  10. ^ "Open-circuit Self-contained Underwater Breathing Apparatus (WO0240343)". European Patent Office. Retrieved 2007-09-18. 
  11. ^ "Open-circuit Self-contained Underwater Breathing Apparatus (EP1343683)". European Patent Office. Retrieved 2007-09-18. 

External links

  • Bill Christensen (2005). "Breathe Like A Fish Thanks To Alan Bodner". Science Fiction in the News. Technovelgy.com. Archived from the original on 14 August 2007. Retrieved 2007-09-14. 
  • www.likeafish.biz Official website
  • 'Like A Fish' Underwater Breathing System: Artificial Gills for U.S. Navy SEALs?
  • Specific publication reference dates from an unusual source
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.