World Library  
Flag as Inappropriate
Email this Article

Ban (unit)

Article Id: WHEBN0003070780
Reproduction Date:

Title: Ban (unit)  
Author: World Heritage Encyclopedia
Language: English
Subject: Information theory, Hartley (unit), Units of information, Transposition cipher, Ban
Publisher: World Heritage Encyclopedia

Ban (unit)

A ban, sometimes called a hartley (symbol Hart) or a dit (short for decimal digit), is a logarithmic unit which measures information or entropy, based on base 10 logarithms and powers of 10, rather than the powers of 2 and base 2 logarithms which define the bit.

As a bit corresponds to a binary digit, so a ban is a decimal digit. A deciban is one tenth of a ban; the name is formed from ban by the SI prefix deci-.

One ban corresponds to log2(10) bit = ln(10) nat, or approximately 3.32 bit,[1] or 2.30 nat. A deciban is about 0.33 bit.


The ban and the deciban were invented by Alan Turing with I. J. Good in 1940, to measure the amount of information that could be deduced by the codebreakers at Bletchley Park using the Banburismus procedure, towards determining each day's unknown setting of the German naval Enigma cipher machine. The name was inspired by the enormous sheets of card, printed in the town of Banbury about 30 miles away, that were used in the process.[1]

Jack Good argued that the sequential summation of decibans to build up a measure of the weight of evidence in favour of a hypothesis, is essentially Bayesian inference.[1] Donald A. Gillies, however, argued the ban is, in effect, the same as Karl Popper's measure of the severity of a test.[2]

The term hartley is after Ralph Hartley, who suggested this unit in 1928.[3][4]

The ban pre-dates Shannon's use of bit as a unit of information by at least eight years, and remains in use in the early 21st Century.[5] In the International System of Quantities it is replaced by the hartley.

Usage as a unit of odds

The deciban is a particularly useful unit for log-odds, notably as a measure of information in Bayes factors, odds ratios (ratio of odds, so log is difference of log-odds), or weights of evidence. 10 decibans corresponds to odds of 10:1; 20 decibans to 100:1 odds, etc. According to I. J. Good, a change in a weight of evidence of 1 deciban (i.e., a change in the odds from evens to about 5:4) is about as finely as humans can reasonably be expected to quantify their degree of belief in a hypothesis.[6]

Odds corresponding to integer decibans can often be well-approximated by simple integer ratios; these are collated below. Value to two decimal places, simple approximation (to within about 5%), with more accurate approximation (to within 1%) if simple one is inaccurate:
decibans exact
0 100/10 1 1:1 50%
1 101/10 1.26 5:4 56%
2 102/10 1.58 3:2 8:5 61%
3 103/10 2.00 2:1 67%
4 104/10 2.51 5:2 71.5%
5 105/10 3.16 3:1 19:6, 16:5 76%
6 106/10 3.98 4:1 80%
7 107/10 5.01 5:1 83%
8 108/10 6.31 6:1 19:3, 25:4 86%
9 109/10 7.94 8:1 89%
10 1010/10 10 10:1 91%


  1. ^ This value, approximately 10/3, but slightly less, can be understood simply because 10^3 = 1,000 \lesssim 1,024 = 2^{10}: 3 decimal digits are slightly less information than 10 binary digits, so 1 decimal digit is slightly less than 10/3 binary digits.


  1. ^ a b
  2. ^
  3. ^
  4. ^ Reza, Fazlollah M. An Introduction to Information Theory. New York: Dover, 1994. ISBN 0-486-68210-2.
  5. ^
  6. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.