World Library  
Flag as Inappropriate
Email this Article

Bit-level parallelism

Article Id: WHEBN0014229148
Reproduction Date:

Title: Bit-level parallelism  
Author: World Heritage Encyclopedia
Language: English
Subject: Parallel computing, SISD, Vector processor, Multithreading (computer architecture), MISD
Collection: Parallel Computing
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Bit-level parallelism

Bit-level parallelism is a form of parallel computing based on increasing processor word size. From the advent of very-large-scale integration (VLSI) computer chip fabrication technology in the 1970s until about 1986, advancements in computer architecture were done by increasing bit-level parallelism[1]

Increasing the word size reduces the number of instructions the processor must execute in order to perform an operation on variables whose sizes are greater than the length of the word. (For example, consider a case where an 8-bit processor must add two 16-bit integers. The processor must first add the 8 lower-order bits from each integer, then add the 8 higher-order bits, requiring two instructions to complete a single operation. A 16-bit processor would be able to complete the operation with single instruction.)

Historically, all of the early electronic computers were serial computers. The first electronic computer that was not a serial computer—the first bit-parallel computer—was the 16-bit Whirlwind from 1951.

Historically, 4-bit microprocessors were replaced with 8-bit, then 16-bit, then 32-bit microprocessors. This trend generally came to an end with the introduction of 32-bit processors, which has been a standard in general purpose computing for two decades. Only recently, with the advent of x86-64 architectures, have 64-bit processors become commonplace.

On 32-bit processors, external data bus width continues to increase. For example, DDR1 SDRAM transfers 128 bits per clock cycle. DDR2 SDRAM transfers a minimum of 256 bits per burst.

See also

References

  1. ^ David E. Culler, Jaswinder Pal Singh, Anoop Gupta. Parallel Computer Architecture - A Hardware/Software Approach. Morgan Kaufmann Publishers, 1999. ISBN 1-55860-343-3, pg 15
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.