World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0014150059
Reproduction Date:

Title: Clcn1  
Author: World Heritage Encyclopedia
Language: English
Subject: Channelopathy, Index of biophysics articles, Spinocerebellar ataxia type-13, X-linked congenital stationary night blindness, Episodic ataxia
Publisher: World Heritage Encyclopedia


Chloride channel, voltage-sensitive 1
Symbols  ; CLC1
External IDs IUPHAR: GeneCards:
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

The CLCN family of voltage-dependent chloride channel genes comprises nine members (CLCN1-7, Ka and Kb) which demonstrate quite diverse functional characteristics while sharing significant sequence homology. The protein encoded by this gene regulates the electric excitability of the skeletal muscle membrane. Mutations in this gene cause two forms of inherited human muscle disorders: recessive generalized myotonia congenita (Becker) and dominant myotonia (Thomsen).[1]

Chloride channel protein, skeletal muscle (CLCN1) is a protein that in humans is encoded by the CLCN1 gene.[2] Mutations in this protein cause congenital myotonia.

CLCN1 is critical for the normal function of skeletal muscle cells. For the body to move normally, skeletal muscles must tense (contract) and relax in a coordinated way. Muscle contraction and relaxation are controlled by the flow of ions into and out of muscle cells. CLCN1 forms an ion channel that controls the flow of negatively charged chloride ions into these cells. The main function of this channel is to stabilize the cells' electrical charge, enabling muscles to contract normally.

In people with congenital myotonia due to a mutation in CLCN1, the ion channel admits too few chloride ions into the cell. This shortage of chloride ions causes prolonged muscle contractions, which are the hallmark of myotonia.

See also

External links

  • GeneReviews/NCBI/NIH/UW entry on Myotonia Congenita
  • CLCN1 protein, human at the US National Library of Medicine Medical Subject Headings (MeSH)


  1. ^ "Entrez Gene: CLCN1 chloride channel 1, skeletal muscle (Thomsen disease, autosomal dominant)". 
  2. ^ Koch MC, Steinmeyer K, Lorenz C, Ricker K, Wolf F, Otto M, Zoll B, Lehmann-Horn F, Grzeschik KH, Jentsch TJ (Sep 1992). "The skeletal muscle chloride channel in dominant and recessive human myotonia". Science 257 (5071): 797–800.  

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.