World Library  
Flag as Inappropriate
Email this Article

CREB-binding protein

Article Id: WHEBN0009927027
Reproduction Date:

Title: CREB-binding protein  
Author: World Heritage Encyclopedia
Language: English
Subject: RBBP4, Histone acetylation and deacetylation, FOXO1, Atrichia with papular lesions, CBP
Collection: Transcription Coregulators
Publisher: World Heritage Encyclopedia

CREB-binding protein

CREB binding protein
PDB rendering based on 1f81.
Available structures
PDB Ortholog search: PDBe, RCSB
Symbols  ; CBP; KAT3A; RSTS
External IDs ChEMBL: GeneCards:
EC number
RNA expression pattern
Species Human Mouse
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)
PubMed search

CREB-binding protein, also known as CREBBP or CBP, is a protein that in humans is encoded by the CREBBP gene.[1][2] The CREB protein carries out its function by activating transcription, where interaction with transcription factors is managed by one or more CREB domains: the nuclear receptor interaction domain (RID), the CREB and MYB interaction domain (KIX), the cysteine/histidine regions (TAZ1/CH1 and TAZ2/CH3) and the interferon response binding domain (IBiD). The CREB protein domains, KIX, TAZ1 and TAZ2, each bind tightly to a sequence spanning both transactivation domains 9aaTADs of transcription factor p53.[3][4]


  • Function 1
  • Clinical significance 2
  • Interactions 3
  • References 4
  • Further reading 5
  • External links 6


This gene is ubiquitously expressed and is involved in the transcriptional coactivation of many different transcription factors. First isolated as a nuclear protein that binds to cAMP-response element-binding protein (CREB), this gene is now known to play critical roles in embryonic development, growth control, and homeostasis by coupling chromatin remodeling to transcription factor recognition. The protein encoded by this gene has intrinsic histone acetyltransferase activity [5] and also acts as a scaffold to stabilize additional protein interactions with the transcription complex. This protein acetylates both histone and non-histone proteins. This protein shares regions of very high-sequence similarity with protein EP300 in its bromodomain, cysteine-histidine-rich regions, and histone acetyltransferase domain.[6] Recent results suggest that novel CBP-mediated post-translational N-glycosylation activity alters the conformation of CBP-interacting proteins, leading to regulation of gene expression, cell growth and differentiation,[7]

Clinical significance

Mutations in this gene cause Rubinstein-Taybi syndrome (RTS).[8] Chromosomal translocations involving this gene have been associated with acute myeloid leukemia.[6][9] Hypothalamic expression of this gene in mice correlates with mouse lifespan, and when CBP is inhibited in C. elegans by RNAi, there is a proportional fold-change decrease in lifespan.


CREB-binding protein has been shown to interact with:


  1. ^ Chrivia JC, Kwok RP, Lamb N, Hagiwara M, Montminy MR, Goodman RH (October 1993). "Phosphorylated CREB binds specifically to the nuclear protein CBP". Nature 365 (6449): 855–9.  
  2. ^ Wydner KL, Bhattacharya S, Eckner R, Lawrence JB, Livingston DM (November 1995). "Localization of human CREB-binding protein gene (CREBBP) to 16p13.2-p13.3 by fluorescence in situ hybridization". Genomics 30 (2): 395–6.  
  3. ^ Teufel DP, Freund SM, Bycroft M, Fersht AR (April 2007). "Four domains of p300 each bind tightly to a sequence spanning both transactivation subdomains of p53". PNAS 104 (17): 7009–7014.  
  4. ^ The prediction for 9aaTADs (for both acidic and hydrophilic transactivation domains) is available online from ExPASy and EMBnet Spain
  5. ^ Ogryzko VV et al. "The transcriptional coactivators p300 and CBP are histone acetyltransferases". Cell. 1996 87(5):953-9.[6]
  6. ^ a b "Entrez Gene: CREBBP (CREB-binding protein)". 
  7. ^ Siddique H, Rao VN, Reddy ES (Aug 2009). "CBP-mediated post-translational N-glycosylation of BRCA2". Int J Oncol. 35 (2): 16387–91.  
  8. ^ Petrij F, Giles RH, Dauwerse HG, Saris JJ, Hennekam RC, Masuno M, Tommerup N, van Ommen GJ, Goodman RH, Peters DJ (July 1995). "Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP". Nature 376 (6538): 348–51.  
  9. ^ Vizmanos JL, Larráyoz MJ, Lahortiga I, Floristán F, Alvarez C, Odero MD, Novo FJ, Calasanz MJ (April 2003). "t(10;16)(q22;p13) and MORF-CREBBP fusion is a recurrent event in acute myeloid leukemia". Genes Chromosomes Cancer 36 (4): 402–5.  
  10. ^ a b c Sano Y, Tokitou F, Dai P, Maekawa T, Yamamoto T, Ishii S (1998). "CBP alleviates the intramolecular inhibition of ATF-2 function". J. Biol. Chem. 273 (44): 29098–105.  
  11. ^ a b Kim J, Jia L, Stallcup MR, Coetzee GA (2005). "The role of protein kinase A pathway and cAMP responsive element-binding protein in androgen receptor-mediated transcription at the prostate-specific antigen locus". J. Mol. Endocrinol. 34 (1): 107–18.  
  12. ^ Frønsdal K, Engedal N, Slagsvold T, Saatcioglu F (1998). "CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1". J. Biol. Chem. 273 (48): 31853–9.  
  13. ^ Ishitani K, Yoshida T, Kitagawa H, Ohta H, Nozawa S, Kato S (2003). "p54nrb acts as a transcriptional coactivator for activation function 1 of the human androgen receptor". Biochem. Biophys. Res. Commun. 306 (3): 660–5.  
  14. ^ a b Aarnisalo P, Palvimo JJ, Jänne OA (1998). "CREB-binding protein in androgen receptor-mediated signaling". Proc. Natl. Acad. Sci. U.S.A. 95 (5): 2122–7.  
  15. ^ Pitkänen J, Doucas V, Sternsdorf T, Nakajima T, Aratani S, Jensen K, Will H, Vähämurto P, Ollila J, Vihinen M, Scott HS, Antonarakis SE, Kudoh J, Shimizu N, Krohn K, Peterson P (2000). "The autoimmune regulator protein has transcriptional transactivating properties and interacts with the common coactivator CREB-binding protein". J. Biol. Chem. 275 (22): 16802–9.  
  16. ^ Iioka T, Furukawa K, Yamaguchi A, Shindo H, Yamashita S, Tsukazaki T (2003). "P300/CBP acts as a coactivator to cartilage homeoprotein-1 (Cart1), paired-like homeoprotein, through acetylation of the conserved lysine residue adjacent to the homeodomain". J. Bone Miner. Res. 18 (8): 1419–29.  
  17. ^ a b c Fan S, Ma YX, Wang C, Yuan RQ, Meng Q, Wang JA, Erdos M, Goldberg ID, Webb P, Kushner PJ, Pestell RG, Rosen EM (2002). "p300 Modulates the BRCA1 inhibition of estrogen receptor activity". Cancer Res. 62 (1): 141–51.  
  18. ^ Pao GM, Janknecht R, Ruffner H, Hunter T, Verma IM (2000). "CBP/p300 interact with and function as transcriptional coactivators of BRCA1". Proc. Natl. Acad. Sci. U.S.A. 97 (3): 1020–5.  
  19. ^ Chai YL, Cui J, Shao N, Shyam E, Reddy P, Rao VN (1999). "The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter". Oncogene 18 (1): 263–8.  
  20. ^ Benezra M, Chevallier N, Morrison DJ, MacLachlan TK, El-Deiry WS, Licht JD (2003). "BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit". J. Biol. Chem. 278 (29): 26333–41.  
  21. ^ a b Neish AS, Anderson SF, Schlegel BP, Wei W, Parvin JD (1998). "Factors associated with the mammalian RNA polymerase II holoenzyme". Nucleic Acids Res. 26 (3): 847–53.  
  22. ^ Kawabuchi M, Satomi Y, Takao T, Shimonishi Y, Nada S, Nagai K, Tarakhovsky A, Okada M (2000). "Transmembrane phosphoprotein Cbp regulates the activities of Src-family tyrosine kinases". Nature 404 (6781): 999–1003.  
  23. ^ Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux JR (2003). "CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation". J. Biol. Chem. 278 (38): 36959–65.  
  24. ^ Lorentz O, Suh ER, Taylor JK, Boudreau F, Traber PG (1999). "CREB-binding [corrected] protein interacts with the homeodomain protein Cdx2 and enhances transcriptional activity". J. Biol. Chem. 274 (11): 7196–9.  
  25. ^ Shi Y, Venkataraman SL, Dodson GE, Mabb AM, LeBlanc S, Tibbetts RS (2004). "Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress". Proc. Natl. Acad. Sci. U.S.A. 101 (16): 5898–903.  
  26. ^ Shimomura A, Ogawa Y, Kitani T, Fujisawa H, Hagiwara M (1996). "Calmodulin-dependent protein kinase II potentiates transcriptional activation through activating transcription factor 1 but not cAMP response element-binding protein". J. Biol. Chem. 271 (30): 17957–60.  
  27. ^ Radhakrishnan I, Pérez-Alvarado GC, Parker D, Dyson HJ, Montminy MR, Wright PE (1997). "Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions". Cell 91 (6): 741–52.  
  28. ^ a b Zor T, Mayr BM, Dyson HJ, Montminy MR, Wright PE (2002). "Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators". J. Biol. Chem. 277 (44): 42241–8.  
  29. ^ a b Giebler HA, Lemasson I, Nyborg JK (2000). "p53 recruitment of CREB binding protein mediated through phosphorylated CREB: a novel pathway of tumor suppressor regulation". Mol. Cell. Biol. 20 (13): 4849–58.  
  30. ^ a b Zhang Q, Vo N, Goodman RH (2000). "Histone binding protein RbAp48 interacts with a complex of CREB binding protein and phosphorylated CREB". Mol. Cell. Biol. 20 (14): 4970–8.  
  31. ^ a b Ernst P, Wang J, Huang M, Goodman RH, Korsmeyer SJ (2001). "MLL and CREB bind cooperatively to the nuclear coactivator CREB-binding protein". Mol. Cell. Biol. 21 (7): 2249–58.  
  32. ^ Ledo F, Kremer L, Mellström B, Naranjo JR (2002). "Ca2+-dependent block of CREB-CBP transcription by repressor DREAM". EMBO J. 21 (17): 4583–92.  
  33. ^ a b Yamaguchi Y, Wada T, Suzuki F, Takagi T, Hasegawa J, Handa H (1998). "Casein kinase II interacts with the bZIP domains of several transcription factors". Nucleic Acids Res. 26 (16): 3854–61.  
  34. ^ Li S, Aufiero B, Schiltz RL, Walsh MJ (2000). "Regulation of the homeodomain CCAAT displacement/cut protein function by histone acetyltransferases p300/CREB-binding protein (CBP)-associated factor and CBP". Proc. Natl. Acad. Sci. U.S.A. 97 (13): 7166–71.  
  35. ^ a b c d Cho H, Orphanides G, Sun X, Yang XJ, Ogryzko V, Lees E, Nakatani Y, Reinberg D (1998). "A human RNA polymerase II complex containing factors that modify chromatin structure". Mol. Cell. Biol. 18 (9): 5355–63.  
  36. ^ Zhao F, McCarrick-Walmsley R, Akerblad P, Sigvardsson M, Kadesch T (2003). "Inhibition of p300/CBP by early B-cell factor". Mol. Cell. Biol. 23 (11): 3837–46.  
  37. ^ Chakraborty S, Senyuk V, Sitailo S, Chi Y, Nucifora G (2001). "Interaction of EVI1 with cAMP-responsive element-binding protein-binding protein (CBP) and p300/CBP-associated factor (P/CAF) results in reversible acetylation of EVI1 and in co-localization in nuclear speckles". J. Biol. Chem. 276 (48): 44936–43.  
  38. ^ a b Sheppard HM, Harries JC, Hussain S, Bevan C, Heery DM (2001). "Analysis of the steroid receptor coactivator 1 (SRC1)-CREB binding protein interaction interface and its importance for the function of SRC1". Mol. Cell. Biol. 21 (1): 39–50.  
  39. ^ Nasrin N, Ogg S, Cahill CM, Biggs W, Nui S, Dore J, Calvo D, Shi Y, Ruvkun G, Alexander-Bridges MC (2000). "DAF-16 recruits the CREB-binding protein coactivator complex to the insulin-like growth factor binding protein 1 promoter in HepG2 cells". Proc. Natl. Acad. Sci. U.S.A. 97 (19): 10412–7.  
  40. ^ Dai P, Akimaru H, Tanaka Y, Maekawa T, Nakafuku M, Ishii S (1999). "Sonic Hedgehog-induced activation of the Gli1 promoter is mediated by GLI3". J. Biol. Chem. 274 (12): 8143–52.  
  41. ^ a b c Tini M, Benecke A, Um SJ, Torchia J, Evans RM, Chambon P (2002). "Association of CBP/p300 acetylase and thymine DNA glycosylase links DNA repair and transcription". Mol. Cell 9 (2): 265–77.  
  42. ^ Ema M, Hirota K, Mimura J, Abe H, Yodoi J, Sogawa K, Poellinger L, Fujii-Kuriyama Y (1999). "Molecular mechanisms of transcription activation by HLF and HIF1alpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300". EMBO J. 18 (7): 1905–14.  
  43. ^ Bhattacharya S, Michels CL, Leung MK, Arany ZP, Kung AL, Livingston DM (1999). "Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1". Genes Dev. 13 (1): 64–75.  
  44. ^ Park YK, Ahn DR, Oh M, Lee T, Yang EG, Son M, Park H (2008). "Nitric oxide donor, (+/-)-S-nitroso-N-acetylpenicillamine, stabilizes transactive hypoxia-inducible factor-1alpha by inhibiting von Hippel-Lindau recruitment and asparagine hydroxylation". Mol. Pharmacol. 74 (1): 236–45.  
  45. ^ Hofmann TG, Möller A, Sirma H, Zentgraf H, Taya Y, Dröge W, Will H, Schmitz ML (2002). "Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2". Nat. Cell Biol. 4 (1): 1–10.  
  46. ^ Soutoglou E, Papafotiou G, Katrakili N, Talianidis I (2000). "Transcriptional activation by hepatocyte nuclear factor-1 requires synergism between multiple coactivator proteins". J. Biol. Chem. 275 (17): 12515–20.  
  47. ^ Chariot A, van Lint C, Chapelier M, Gielen J, Merville MP, Bours V (1999). "CBP and histone deacetylase inhibition enhance the transactivation potential of the HOXB7 homeodomain-containing protein". Oncogene 18 (27): 4007–14.  
  48. ^ Yoshida E, Aratani S, Itou H, Miyagishi M, Takiguchi M, Osumu T, Murakami K, Fukamizu A (1997). "Functional association between CBP and HNF4 in trans-activation". Biochem. Biophys. Res. Commun. 241 (3): 664–9.  
  49. ^ Dell H, Hadzopoulou-Cladaras M (1999). "CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression". J. Biol. Chem. 274 (13): 9013–21.  
  50. ^ Vieyra D, Loewith R, Scott M, Bonnefin P, Boisvert FM, Cheema P, Pastyryeva S, Meijer M, Johnston RN, Bazett-Jones DP, McMahon S, Cole MD, Young D, Riabowol K (2002). "Human ING1 proteins differentially regulate histone acetylation". J. Biol. Chem. 277 (33): 29832–9.  
  51. ^ Hong W, Resnick RJ, Rakowski C, Shalloway D, Taylor SJ, Blobel GA (2002). "Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68". Mol. Cancer Res. 1 (1): 48–55.  
  52. ^ Song CZ, Keller K, Murata K, Asano H, Stamatoyannopoulos G (2002). "Functional interaction between coactivators CBP/p300, PCAF, and transcription factor FKLF2". J. Biol. Chem. 277 (9): 7029–36.  
  53. ^ Geiman DE, Ton-That H, Johnson JM, Yang VW (2000). "Transactivation and growth suppression by the gut-enriched Krüppel-like factor (Krüppel-like factor 4) are dependent on acidic amino acid residues and protein-protein interaction". Nucleic Acids Res. 28 (5): 1106–13.  
  54. ^ Barlev NA, Poltoratsky V, Owen-Hughes T, Ying C, Liu L, Workman JL, Berger SL (1998). "Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex". Mol. Cell. Biol. 18 (3): 1349–58.  
  55. ^ Chen Q, Dowhan DH, Liang D, Moore DD, Overbeek PA (2002). "CREB-binding protein/p300 co-activation of crystallin gene expression". J. Biol. Chem. 277 (27): 24081–9.  
  56. ^ Goto NK, Zor T, Martinez-Yamout M, Dyson HJ, Wright PE (2002). "Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the KIX domain". J. Biol. Chem. 277 (45): 43168–74.  
  57. ^ Shetty S, Takahashi T, Matsui H, Ayengar R, Raghow R (1999). "Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA-binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300)". Biochem. J. 339 (3): 751–8.  
  58. ^ a b Bessa M, Saville MK, Watson RJ (2001). "Inhibition of cyclin A/Cdk2 phosphorylation impairs B-Myb transactivation function without affecting interactions with DNA or the CBP coactivator". Oncogene 20 (26): 3376–86.  
  59. ^ Polesskaya A, Naguibneva I, Duquet A, Bengal E, Robin P, Harel-Bellan A (2001). "Interaction between acetylated MyoD and the bromodomain of CBP and/or p300". Mol. Cell. Biol. 21 (16): 5312–20.  
  60. ^ Sartorelli V, Huang J, Hamamori Y, Kedes L (1997). "Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C". Mol. Cell. Biol. 17 (2): 1010–26.  
  61. ^ a b Wu RC, Qin J, Hashimoto Y, Wong J, Xu J, Tsai SY, Tsai MJ, O'Malley BW (2002). "Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase". Mol. Cell. Biol. 22 (10): 3549–61.  
  62. ^ Naltner A, Wert S, Whitsett JA, Yan C (2000). "Temporal/spatial expression of nuclear receptor coactivators in the mouse lung". Am. J. Physiol. Lung Cell Mol. Physiol. 279 (6): L1066–74.  
  63. ^ Lee SK, Anzick SL, Choi JE, Bubendorf L, Guan XY, Jung YK, Kallioniemi OP, Kononen J, Trent JM, Azorsa D, Jhun BH, Cheong JH, Lee YC, Meltzer PS, Lee JW (1999). "A nuclear factor, ASC-2, as a cancer-amplified transcriptional coactivator essential for ligand-dependent transactivation by nuclear receptors in vivo". J. Biol. Chem. 274 (48): 34283–93.  
  64. ^ Lee SK, Jung SY, Kim YS, Na SY, Lee YC, Lee JW (2001). "Two distinct nuclear receptor-interaction domains and CREB-binding protein-dependent transactivation function of activating signal cointegrator-2". Mol. Endocrinol. 15 (2): 241–54.  
  65. ^ a b Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001). "Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms". Cell 104 (3): 365–76.  
  66. ^ Yang T, Davis RJ, Chow CW (2001). "Requirement of two NFATc4 transactivation domains for CBP potentiation". J. Biol. Chem. 276 (43): 39569–76.  
  67. ^ Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M (2001). "Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription". Genes Cells 6 (10): 857–68.  
  68. ^ Hung HL, Kim AY, Hong W, Rakowski C, Blobel GA (2001). "Stimulation of NF-E2 DNA binding by CREB-binding protein (CBP)-mediated acetylation". J. Biol. Chem. 276 (14): 10715–21.  
  69. ^ Almlöf T, Wallberg AE, Gustafsson JA, Wright AP (1998). "Role of important hydrophobic amino acids in the interaction between the glucocorticoid receptor tau 1-core activation domain and target factors". Biochemistry 37 (26): 9586–94.  
  70. ^ Kasper LH, Brindle PK, Schnabel CA, Pritchard CE, Cleary ML, van Deursen JM (1999). "CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity". Mol. Cell. Biol. 19 (1): 764–76.  
  71. ^ Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (2002). "MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation". EMBO J. 21 (22): 6236–45.  
  72. ^ Livengood JA, Scoggin KE, Van Orden K, McBryant SJ, Edayathumangalam RS, Laybourn PJ, Nyborg JK (2002). "p53 Transcriptional activity is mediated through the SRC1-interacting domain of CBP/p300". J. Biol. Chem. 277 (11): 9054–61.  
  73. ^ Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (1999). "Activation of PPARgamma coactivator-1 through transcription factor docking". Science 286 (5443): 1368–71.  
  74. ^ Karetsou Z, Kretsovali A, Murphy C, Tsolas O, Papamarcaki T (2002). "Prothymosin alpha interacts with the CREB-binding protein and potentiates transcription". EMBO Rep. 3 (4): 361–6.  
  75. ^ a b Matsuzaki K, Minami T, Tojo M, Honda Y, Saitoh N, Nagahiro S, Saya H, Nakao M (2003). "PML-nuclear bodies are involved in cellular serum response". Genes Cells 8 (3): 275–86.  
  76. ^ Doucas V, Tini M, Egan DA, Evans RM (1999). "Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling". Proc. Natl. Acad. Sci. U.S.A. 96 (6): 2627–32.  
  77. ^ Zhong S, Delva L, Rachez C, Cenciarelli C, Gandini D, Zhang H, Kalantry S, Freedman LP, Pandolfi PP (1999). "A RA-dependent, tumour-growth suppressive transcription complex is the target of the PML-RARalpha and T18 oncoproteins". Nat. Genet. 23 (3): 287–95.  
  78. ^ Jang HD, Yoon K, Shin YJ, Kim J, Lee SY (2004). "PIAS3 suppresses NF-kappaB-mediated transcription by interacting with the p65/RelA subunit". J. Biol. Chem. 279 (23): 24873–80.  
  79. ^ Zhong H, May MJ, Jimi E, Ghosh S (2002). "The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1". Mol. Cell 9 (3): 625–36.  
  80. ^ Parry GC, Mackman N (1997). "Role of cyclic AMP response element-binding protein in cyclic AMP inhibition of NF-kappaB-mediated transcription". J. Immunol. 159 (11): 5450–6.  
  81. ^ Gerritsen ME, Williams AJ, Neish AS, Moore S, Shi Y, Collins T (1997). "CREB-binding protein/p300 are transcriptional coactivators of p65". Proc. Natl. Acad. Sci. U.S.A. 94 (7): 2927–32.  
  82. ^ Merienne K, Pannetier S, Harel-Bellan A, Sassone-Corsi P (2001). "Mitogen-regulated RSK2-CBP interaction controls their kinase and acetylase activities". Mol. Cell. Biol. 21 (20): 7089–96.  
  83. ^ Hirose T, Fujii R, Nakamura H, Aratani S, Fujita H, Nakazawa M, Nakamura K, Nishioka K, Nakajima T (2003). "Regulation of CREB-mediated transcription by association of CDK4 binding protein p34SEI-1 with CBP". Int. J. Mol. Med. 11 (6): 705–12.  
  84. ^ DiRenzo J, Shang Y, Phelan M, Sif S, Myers M, Kingston R, Brown M (2000). "BRG-1 is recruited to estrogen-responsive promoters and cooperates with factors involved in histone acetylation". Mol. Cell. Biol. 20 (20): 7541–9.  
  85. ^ Pearson KL, Hunter T, Janknecht R (1999). "Activation of Smad1-mediated transcription by p300/CBP". Biochim. Biophys. Acta 1489 (2-3): 354–64.  
  86. ^ a b Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R (1996). "SREBP transcriptional activity is mediated through an interaction with the CREB-binding protein". Genes Dev. 10 (22): 2903–11.  
  87. ^ Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, Cowan M, Ghosh A (2004). "Dendrite development regulated by CREST, a calcium-regulated transcriptional activator". Science 303 (5655): 197–202.  
  88. ^ Zhang JJ, Vinkemeier U, Gu W, Chakravarti D, Horvath CM, Darnell JE (1996). "Two contact regions between Stat1 and CBP/p300 in interferon gamma signaling". Proc. Natl. Acad. Sci. U.S.A. 93 (26): 15092–6.  
  89. ^ Bhattacharya S, Eckner R, Grossman S, Oldread E, Arany Z, D'Andrea A, Livingston DM (1996). "Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha". Nature 383 (6598): 344–7.  
  90. ^ Litterst CM, Pfitzner E (2001). "Transcriptional activation by STAT6 requires the direct interaction with NCoA-1". J. Biol. Chem. 276 (49): 45713–21.  
  91. ^ McDonald C, Reich NC (1999). "Cooperation of the transcriptional coactivators CBP and p300 with Stat6". J. Interferon Cytokine Res. 19 (7): 711–22.  
  92. ^ Bradney C, Hjelmeland M, Komatsu Y, Yoshida M, Yao TP, Zhuang Y (2003). "Regulation of E2A activities by histone acetyltransferases in B lymphocyte development". J. Biol. Chem. 278 (4): 2370–6.  
  93. ^ Misra P, Qi C, Yu S, Shah SH, Cao WQ, Rao MS, Thimmapaya B, Zhu Y, Reddy JK (2002). "Interaction of PIMT with transcriptional coactivators CBP, p300, and PBP differential role in transcriptional regulation". J. Biol. Chem. 277 (22): 20011–9.  
  94. ^ Gizard F, Lavallée B, DeWitte F, Hum DW (2001). "A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression". J. Biol. Chem. 276 (36): 33881–92.  
  95. ^ Silverman ES, Du J, Williams AJ, Wadgaonkar R, Drazen JM, Collins T (1998). "cAMP-response-element-binding-protein-binding protein (CBP) and p300 are transcriptional co-activators of early growth response factor-1 (Egr-1)". Biochem. J. 336 (1): 183–9.  

Further reading

  • Goldman PS, Tran VK, Goodman RH (1997). "The multifunctional role of the co-activator CBP in transcriptional regulation.". Recent Prog. Horm. Res. 52: 103–19; discussion 119–20.  
  • Marcello A, Zoppé M, Giacca M (2002). "Multiple modes of transcriptional regulation by the HIV-1 Tat transactivator.". IUBMB Life 51 (3): 175–81.  
  • Matt T (2002). "Transcriptional control of the inflammatory response: a role for the CREB-binding protein (CBP).". Acta Med. Austriaca 29 (3): 77–9.  
  • Combes R, Balls M, Bansil L; et al. (2002). "An assessment of progress in the use of alternatives in toxicity testing since the publication of the report of the second FRAME Toxicity Committee (1991).". Alternatives to laboratory animals : ATLA 30 (4): 365–406.  
  • Minghetti L, Visentin S, Patrizio M; et al. (2004). "Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions.". Neurochem. Res. 29 (5): 965–78.  
  • Kino T, Pavlakis GN (2004). "Partner molecules of accessory protein Vpr of the human immunodeficiency virus type 1.". DNA Cell Biol. 23 (4): 193–205.  
  • Greene WC, Chen LF (2004). "Regulation of NF-kappaB action by reversible acetylation.". Novartis Found. Symp. 259: 208–17; discussion 218–25.  
  • Liou LY, Herrmann CH, Rice AP (2005). "HIV-1 infection and regulation of Tat function in macrophages.". Int. J. Biochem. Cell Biol. 36 (9): 1767–75.  
  • Pugliese A, Vidotto V, Beltramo T; et al. (2005). "A review of HIV-1 Tat protein biological effects.". Cell Biochem. Funct. 23 (4): 223–7.  
  • Bannwarth S, Gatignol A (2005). "HIV-1 TAR RNA: the target of molecular interactions between the virus and its host.". Curr. HIV Res. 3 (1): 61–71.  
  • Le Rouzic E, Benichou S (2006). "The Vpr protein from HIV-1: distinct roles along the viral life cycle.". Retrovirology 2: 11.  
  • Gibellini D, Vitone F, Schiavone P, Re MC (2005). "HIV-1 tat protein and cell proliferation and survival: a brief review.". New Microbiol. 28 (2): 95–109.  
  • Hetzer C, Dormeyer W, Schnölzer M, Ott M (2006). "Decoding Tat: the biology of HIV Tat posttranslational modifications.". Microbes Infect. 7 (13): 1364–9.  
  • Peruzzi F (2006). "The multiple functions of HIV-1 Tat: proliferation versus apoptosis.". Front. Biosci. 11: 708–17.  

External links

  • GeneReviews/NCBI/NIH/UW entry on Rubinstein-Taybi Syndrome
  • CREBBP protein, human at the US National Library of Medicine Medical Subject Headings (MeSH)
  • NURSA C39
  • - The Interactive Flynejire Drosophila

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.