World Library  
Flag as Inappropriate
Email this Article

Cartan formalism (physics)

Article Id: WHEBN0000973430
Reproduction Date:

Title: Cartan formalism (physics)  
Author: World Heritage Encyclopedia
Language: English
Subject: Tetrad formalism, Frame fields in general relativity, Connection (mathematics), Differential geometry, Tensors
Collection: Connection (Mathematics), Differential Geometry, Mathematical Methods in General Relativity
Publisher: World Heritage Encyclopedia

Cartan formalism (physics)

This page covers applications of the Cartan formalism. For the general concept see Cartan connection.

The vierbein or tetrad theory much used in theoretical physics is a special case of the application of Cartan connection in four-dimensional manifolds. It applies to metrics of any signature. (See metric tensor.) This section is an approach to tetrads, but written in general terms. In dimensions other than 4, words like triad, pentad, zweibein, fünfbein, elfbein etc. have been used. Vielbein covers all dimensions. (In German, vier stands for four and viel stands for many.)

For a basis-dependent index notation, see tetrad (index notation).


  • The basic ingredients 1
  • Example: general relativity 2
  • Constructions 3
  • The Palatini action 4
  • Notes 5

The basic ingredients

Suppose we are working on a differential manifold M of dimension n, and have fixed natural numbers p and q with

p + q = n.

Furthermore, we assume that we are given a SO(p, q) principal bundle B over M and a SO(pq)-vector bundle V associated to B by means of the natural n-dimensional representation of SO(pq). Equivalently, V is a rank n real vector bundle over M, equipped with a metric η with signature (p, q) (aka non degenerate quadratic form).[1]

The basic ingredient of the Cartan formalism is an invertible linear map e\colon{\rm T}M\to V, between vector bundles over M where TM is the tangent bundle of M. The invertibility condition on e is sometimes dropped. In particular if B is the trivial bundle, as we can always assume locally, V has a basis of orthogonal sections f_a = f_1 \ldots f_n. With respect to this basis \eta_{ab} = \eta(f_a, f_b) = {\rm diag}(1,\ldots 1, -1, \ldots, -1) is a constant matrix. For a choice of local coordinates x^\mu = x^{-1}, \ldots, x^{-n} on M (the negative indices are only to distinguish them from the indices labeling the f_a) and a corresponding local frame \partial_\mu = \frac{\partial}{\partial x^\mu} of the tangent bundle, the map e is determined by the images of the basis sections

e_a := e(f_a) := e^\mu_a \partial_\mu.

They determine a (non coordinate) basis of the tangent bundle (provided e is invertible and only locally if B is only locally trivialised). The matrix e^\mu_a , \mu = -1, \dots, -n, a = 1, \dots, n is called the tetrad, vierbein, vielbein etc.. Its interpretation as a local frame crucially depends on the implicit choice of local bases.

Note that an isomorphism V \cong {\rm T}M gives a reduction B \to {\rm Fr}(M) of the frame bundle, the principal bundle of the tangent bundle. In general, such a reduction is impossible for topological reasons. Thus, in general for continuous maps e, one cannot avoid that e becomes degenerate at some points of M.

Example: general relativity

We can describe geometries in general relativity in terms of a tetrad field instead of the usual metric tensor field. The metric tensor g_{\alpha\beta}\! gives the inner product in the tangent space directly:

\langle \mathbf{x},\mathbf{y} \rangle = g_{\alpha\beta} \, x^{\alpha} \, y^{\beta}.\,

The tetrad e_{\alpha}^i may be seen as a (linear) map from the tangent space to Minkowski space that preserves the inner product. This lets us find the inner product in the tangent space by mapping our two vectors into Minkowski space and taking the usual inner product there:

\langle \mathbf{x},\mathbf{y} \rangle = \eta_{ij} (e_{\alpha}^i \, x^{\alpha}) (e_{\beta}^j \, y^{\beta}).\,

Here \alpha and \beta range over tangent-space coordinates, while i and j range over Minkowski coordinates. The tetrad field e_{\alpha}^i(\mathbf{x}) defines a metric tensor field via the pullback g_{\alpha\beta}(\mathbf{x}) = \eta_{ij} \, e_{\alpha}^i(\mathbf{x}) \, e_{\beta}^j(\mathbf{x}).


A (pseudo-)Riemannian metric is defined over M as the pullback of η by e. To put it in other words, if we have two sections of TM, X and Y,

g(X,Y) = η(e(X), e(Y)).

A connection over V is defined as the unique connection A satisfying these two conditions:

  • dη(a,b) = η(dAa,b) + η(a,dAb) for all differentiable sections a and b of V (i.e. dAη = 0) where dA is the covariant exterior derivative. This implies that A can be extended to a connection over the SO(p,q) principal bundle.
  • dAe = 0. The quantity on the left hand side is called the torsion. This basically states that \nabla defined below is torsion-free. This condition is dropped in the Einstein-Cartan theory, but then we cannot define A uniquely anymore.

This is called the spin connection.

Now that we have specified A, we can use it to define a connection ∇ over TM via the isomorphism e:

e(∇X) = dAe(X) for all differentiable sections X of TM.

Since what we now have here is a SO(p,q) gauge theory, the curvature F defined as \bold{F}\ \stackrel{\mathrm{def}}{=}\ d\bold{A}+\bold{A}\wedge\bold{A} is pointwise gauge covariant. This is simply the Riemann curvature tensor in a different form.

An alternate notation writes the connection form A as ω, the curvature form F as Ω, the canonical vector-valued 1-form e as θ, and the exterior covariant derivative d_A as D.

The Palatini action

In the tetrad formulation of general relativity, the action, as a functional of the vierbein e and a connection form \omega, with an associated field strength \Omega = D\omega = d\omega + \omega \wedge \omega, over a four-dimensional differentiable manifold M is given by

S\ \stackrel{\mathrm{def}}{=}\ M^2_{pl}\int_M \epsilon_{abcd}( e^{a} \wedge e^{b} \wedge \Omega^{cd}) = M^2_{pl}\int_M d^4x \epsilon^{\mu \nu \rho \sigma} \epsilon_{abcd} e^a_{\mu} e^b_{\nu} R^{cd}_{\rho \sigma}[\omega]
= M^2_{pl}\int |e| d^4 x \frac{1}{2} e^{\mu}_a e^{\nu}_b R^{ab}_{\mu \nu}
= \frac{c^4}{16 \pi G} \int d^4x \sqrt{-g} R[g]

where \Omega_{\mu \nu} ^{ab} = R_{\mu \nu} ^{ab} is the gauge curvature 2-form, \epsilon_{abcd} is the antisymmetric Levi-Civita symbol, and that |e| = \epsilon^{\mu \nu \rho \sigma} \epsilon_{abcd} e^a_{\mu}e^b_{\nu}e^c_{\rho}e^d_{\sigma} is the determinant of e_{\mu}^a. Here we see that the differential form language leads to an equivalent action to that of the normal Einstein–Hilbert action, using the relations |e| = \sqrt{-g} and R^{\lambda \sigma}_{\mu \nu}= e^{\lambda}_a e^{\sigma}_b R^{ab}_{\mu \nu} . Note that in terms of the Planck mass, we set \hbar = c =1, whereas the last term keeps all the SI unit factors.

Note that in the presence of spinor fields, the Palatini action implies that d\omega is nonzero. So there's a non-zero torsion, i.e. that \hat{\omega}^{ab}_{\mu} = \omega^{ab}_{\mu} + K^{a b}_{\mu}. See Einstein-Cartan theory.


  1. ^ A variant of the construction uses reduction to a Spin(pq) principal spin bundle. In that case, the principal bundle contains more information than the bundle V together with the metric η, which is needed to construct spinorial fields.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.