World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0004420711
Reproduction Date:

Title: CLaMS  
Author: World Heritage Encyclopedia
Language: English
Subject: Chemical transport model, Paleontology in Montana, Fishing dredge, Surf zone, Cardigan, Prince Edward Island
Collection: Numerical Climate and Weather Models, Ozone Depletion
Publisher: World Heritage Encyclopedia


CLaMS (Chemical Lagrangian Model of the Stratosphere) is a modular chemistry transport model (CTM) system developed at Forschungszentrum Jülich, Germany. CLaMS was first described by McKenna et al. (2000a,b) and was expanded into three dimensions by Konopka et al. (2004). CLaMS has been employed in recent European field campaigns THESEO, EUPLEX, TROCCINOX SCOUT-O3, and RECONCILE with a focus on simulating ozone depletion and water vapour transport.

Major strengths of CLaMS in comparison to other CTMs are

  1. its applicability for reverse domain filling studies
  2. its anisotropic mixing scheme
  3. its integrability with arbitrary observational data
  4. its comprehensive chemistry scheme


  • CLaMS gridding 1
  • CLaMS Hierarchy 2
    • Trajectory module 2.1
    • Box chemistry module 2.2
    • Lagrangian mixing 2.3
    • Lagrangian sedimentation 2.4
  • CLaMS data sets 3
  • See also 4
  • External links 5
  • References 6

CLaMS gridding

Unlike other CTMs (e.g. SLIMCAT, REPROBUS), CLaMS operates on a Lagrangian model grid (see section about model grids in general circulation model): an air parcel is described by three space coordinates and a time coordinate. The time evolution path that an air parcels traces in space is called a trajectory. A specialised mixing scheme ensures that physically realistic diffusion is imposed on an ensemble of trajectories in regions of high wind shear.

CLaMS operates on arbitrarily resolved horizontal grids. The space coordinates are latitude, longitude and potential temperature.

CLaMS Hierarchy

CLaMS is composed of four modules and several preprocessors. The four modules are

  1. a trajectory module
  2. a box chemistry module
  3. a Lagrangian mixing module
  4. a Lagrangian sedimentation scheme

Trajectory module

Integration of trajectories with 4th order Runge-Kutta method, integration time step 30 minutes. Vertical displacement of trajectories is calculated from radiation budget.

Box chemistry module

Chemistry is based on the ASAD chemistry code of the University of Cambridge. More than 100 chemical reactions involving 40+ chemical species are considered. Integration time step is 10 minutes, species can be combined into chemical families to facilitate integration. The module includes a radiative transfer model for the determination of photolysis rates. The module also includes heterogeneous reactions on NAT, ice and liquid particle surfaces.

Lagrangian mixing

Mixing is based on grid deformation of quasi uniform air parcel distributions. The contraction or elongation factors of the distances to neighboring air parcels are examined: if a critical elongation (contraction) is reached, new air parcels are introduced (taken away). This way, anisotropic diffusion is simulated in a physically realistic manner.

Lagrangian sedimentation

Lagrangian sedimentation is calculated by following individual nitric acid trihydrate (NAT) particles that may grow or shrink by the uptake or release of HNO3 from/to the gas phase. These particle parcels are simulated independently from the Lagrangian air parcels. Their trajectories are determined using the horizontal winds and their vertical settling velocity that depends on the size of the individual particles. NAT particles are nucleated assuming a constant nucleation rate and they evaporate where temperatures grow too high. With this, a vertical redistribution of HNO3 (denitrification and renitrification) is determined.

CLaMS data sets

A chemical transport model does not simulate the dynamics of the atmosphere. For CLaMS, the following meteorological data sets have been used

  • European Centre for Medium-Range Weather Forecasts (ECMWF), Predictions, Analyses, ERA-15, ERA-40
  • United Kingdom Met Office (UKMO)
  • European Centre Hamburg Atmospheric Model (ECHAM4), in the DLR version

To initialize the chemical fields in CLaMS, data from a large variety of instruments have provided data.

  • on satellite (CRISTA, MIPAS, MLS, HALOE, ILAS, ...),
  • on aircraft and balloons (HALOX, FISH, Mark IV, BONBON...)

If no observations are present, the chemical fields can be initialised from two-dimensional chemical models, chemistry-climate models, climatologies, or from correlations between chemical species or chemical species and dynamical variables.

See also

External links

  • CLaMS at Forschungszentrum Jülich
  • Current field campaign SCOUT-O3


The details of the model CLaMS are well documented and published in the scientific literature.

  • Formulation of advection and mixing by McKenna et al., 2002a
  • Formulation of chemistry-scheme and initialisation by McKenna et al., 2002b
  • Comparison of the chemistry module with other stratospheric models by Krämer et al., 2003
  • Calculation of photolysis rates by Becker et al., 2000
  • Extension to 3-dimension model version by Konopka et al., 2004
  • Lagrangian sedimentation by Grooß et al., 2005
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.