World Library  
Flag as Inappropriate
Email this Article

Continuous wavelet transform

Article Id: WHEBN0000679596
Reproduction Date:

Title: Continuous wavelet transform  
Author: World Heritage Encyclopedia
Language: English
Subject: Wavelet, List of wavelet-related transforms, S transform, Scaleogram, Continuous wavelet
Collection: Continuous Mappings, Integral Transforms
Publisher: World Heritage Encyclopedia

Continuous wavelet transform

Continuous wavelet transform of frequency breakdown signal. Used symlet with 5 vanishing moments.

In mathematics, a continuous wavelet transform (CWT) is used to divide a continuous-time function into wavelets. Unlike Fourier transform, the continuous wavelet transform possesses the ability to construct a time-frequency representation of a signal that offers very good time and frequency localization. The continuous wavelet transform of a function x(t) at a scale (a>0) a\in\mathbb{R^{+*}} and translational value b\in\mathbb{R} is expressed by the following integral

X_w(a,b)=\frac{1}{|a|^{1/2}} \int_{-\infty}^{\infty} x(t)\overline\psi\left(\frac{t-b}{a}\right)\, dt

where \psi(t) is a continuous function in both the time domain and the frequency domain called the mother wavelet and the overline represents operation of complex conjugate. The main purpose of the mother wavelet is to provide a source function to generate the daughter wavelets which are simply the translated and scaled versions of the mother wavelet. To recover the original signal x(t), the first inverse continuous wavelet transform can be exploited.

x(t)=C_\psi^{-1}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} X_w(a,b)\frac{1}{|a|^{1/2}}\tilde\psi\left(\frac{t-b}{a}\right)\, db\ \frac{da}{a^2}

\tilde\psi(t) is the dual function of \psi(t) and

C_\psi=\int_{-\infty}^{\infty}\frac{\overline\hat{\psi}(\omega)\hat{\tilde\psi}(\omega)}{|\omega|}\, d\omega

is admissible constant, where hat means Fourier transform operator. Sometimes, \tilde\psi(t)=\psi(t), then the admissible constant becomes

C_\psi = \int_{-\infty}^{+\infty} \frac{\left| \hat{\psi}(\omega) \right|^2}{\left| \omega \right|} d\omega

Traditionally, this constant is called wavelet admissible constant. A wavelet whose admissible constant satisfies


is called an admissible wavelet. An admissible wavelet implies that \hat{\psi}(0) = 0, so that an admissible wavelet must integrate to zero. To recover the original signal x(t), the second inverse continuous wavelet transform can be exploited.

x(t)=\frac{1}{2\pi\overline\hat{\psi}(1)}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \frac{1}{a^2}X_w(a,b)\exp\left(i\frac{t-b}{a}\right)\, db\ da

This inverse transform suggests that a wavelet should be defined as


where w(t) is a window. Such defined wavelet can be called as an analyzing wavelet, because it admits to time-frequency analysis. An analyzing wavelet is unnecessary to be admissible.


  • Scale factor 1
  • Continuous wavelet transform properties 2
  • Applications of the wavelet transform 3
  • See also 4
  • References 5

Scale factor

The scale factor a either dilates or compresses a signal. When the scale factor is relatively low, the signal is more contracted which in turn results in a more detailed resulting graph. However, the drawback is that low scale factor does not last for the entire duration of the signal. On the other hand, when the scale factor is high, the signal is stretched out which means that the resulting graph will be presented in less detail. Nevertheless, it usually lasts the entire duration of the signal.

Continuous wavelet transform properties

In definition, the continuous wavelet transform is a convolution of the input data sequence with a set of functions generated by the mother wavelet. The convolution can be computed by using the Fast Fourier Transform (FFT). Normally, the output X_w(a,b) is a real valued function except when the mother wavelet is complex. A complex mother wavelet will convert the continuous wavelet transform to a complex valued function. The power spectrum of the continuous wavelet transform can be represented by |X_w(a,b)|^2 .

Applications of the wavelet transform

One of the most popular applications of wavelet transform is image compression. The advantage of using wavelet-based coding in image compression is that it provides significant improvements in picture quality at higher compression ratios over conventional techniques. Since wavelet transform has the ability to decompose complex information and patterns into elementary forms, it is commonly used in acoustics processing and pattern recognition. Moreover, wavelet transforms can be applied to the following scientific research areas: edge and corner detection, partial differential equation solving, transient detection, filter design, electrocardiogram (ECG) analysis, texture analysis, business information analysis and gait analysis.[1]

Continuous Wavelet Transform (CWT) is very efficient in determining the damping ratio of oscillating signals (e.g. identification of damping in dynamical systems). CWT is also very resistant to the noise in the signal.[2]

See also


  • A. Grossmann & J. Morlet, 1984, Decomposition of Hardy functions into square integrable wavelets of constant shape, Soc. Int. Am. Math. (SIAM), J. Math. Analys.,

15, 723-736.

  • Lintao Liu and Houtse Hsu (2012) "Inversion and normalization of time-frequency transform" AMIS 6 No. 1S pp. 67S-74S.
  • St├ęphane Mallat, "A wavelet tour of signal processing" 2nd Edition, Academic Press, 1999, ISBN 0-12-466606-X
  • Ding, Jian-Jiun (2008), Time-Frequency Analysis and Wavelet Transform, viewed 19 January 2008
  • Polikar, Robi (2001), The Wavelet Tutorial, viewed 19 January 2008
  • WaveMetrics (2004), Time Frequency Analysis, viewed 18 January 2008
  • Valens, Clemens (2004), A Really Friendly Guide to Wavelets, viewed 18 January 2008]
  • Mathematica Continuous Wavelet Transform
  • Lewalle, Jacques: Continuous wavelet transform, viewed 6 February 2010
  1. ^ "Novel method for stride length estimation with body area network accelerometers", IEEE BioWireless 2011, pp. 79-82
  2. ^ Slavic, J and Simonovski, I and M. Boltezar, Damping identification using a continuous wavelet transform: application to real data
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.