World Library  
Flag as Inappropriate
Email this Article

Degrees of freedom (physics and chemistry)

Article Id: WHEBN0026998547
Reproduction Date:

Title: Degrees of freedom (physics and chemistry)  
Author: World Heritage Encyclopedia
Language: English
Subject: Relational quantum mechanics, Temperature, Dimension, Forms of energy, Planck units
Publisher: World Heritage Encyclopedia

Degrees of freedom (physics and chemistry)

In physics, a degree of freedom is an independent physical parameter in the formal description of the state of a physical system. The set of all dimensions of a system is known as a phase space, and degrees of freedom are sometimes referred to as its dimensions.


A degree of freedom of a physical system refers to a (typically real) parameter that is necessary to characterize the state of a physical system.

Consider a point particle that is free to move in three dimensions. The location of any particle in three-dimensional space can be specified by three position coordinates: x, y, and z. The direction and speed at which a particle moves can be described in terms of three velocity components, e.g. vx, vy, and vz. If the time evolution of the system is deterministic, where the state at one instant uniquely determines its past and future position and velocity as a function of time, such a system will have six degrees of freedom. If the motion of the particle is constrained to a lower number of dimensions – if, for example, the particle must move along a wire or on a fixed surface – then the system will have less than six degrees of freedom. On the other hand, a system with an extended object that may rotate or vibrate can have more than six degrees of freedom. A force on the particle that depends only upon time and the particle's position and velocity fits this description.

In mechanics, a point particle's state at any given time can be described with position and velocity coordinates in the Lagrangian formalism, or with position and momentum coordinates in the Hamiltonian formalism.

Similarly, in statistical mechanics, a degree of freedom is a single scalar number describing the microstate of a system.[1] The specification of all microstates of a system is a point in the system's phase space.

A degree of freedom may be any useful property that is not dependent on other variables. For example, in the 3D ideal chain model, two angles are necessary to describe each monomer's orientation.

In statistical mechanics and thermodynamics, it is often useful to specify quadratic degrees of freedom. These are degrees of freedom that contribute in a quadratic way to the energy of the system. They are also variables that contribute quadratically to the Hamiltonian.

Degrees of freedom of gas molecules

Different ways of visualizing the 6 degrees of freedom of a diatomic molecule. (CM: center of mass of the system, T: translational motion, R: rotational motion, V: vibrational motion.)

In three-dimensional space, three degrees of freedom are associated with the movement of a particle. A diatomic gas molecule thus has 6 degrees of freedom. This set may be decomposed in terms of translations, rotations, and vibrations of the molecule. The center of mass motion of the entire molecule accounts for 3 degrees of freedom. In addition, the molecule has two rotational degrees of motion and one vibrational mode. The rotations occur around the two axes perpendicular to the line between the two atoms. The rotation around the atom–atom bond is not a physical rotation. This yields, for a diatomic molecule, a decomposition of:

3N = 6 = 3 + 2 + 1.

For a general (non-linear) molecule with N > 2 atoms, all 3 rotational degrees of freedom are considered, resulting in the decomposition:

3N = 3 + 3 + (3N - 6)

which means that an N-atom molecule has 3N − 6 vibrational degrees of freedom for N > 2. In special cases, such as adsorbed large molecules, the rotational degrees of freedom can be limited to only one.[2]

As defined above one can also count degrees of freedom using the minimum number of coordinates required to specify a position. This is done as follows:

  1. For a single particle we need 2 coordinates in a 2-D plane to specify its position and 3 coordinates in 3-D plane. Thus its degree of freedom in a 3-D plane is 3.
  2. For a body consisting of 2 particles (ex. a diatomic molecule) in a 3-D plane with constant distance between them (let's say d) we can show (below) its degrees of freedom to be 5.

Let's say one particle in this body has coordinate (x1, y1, z1) and the other has coordinate (x2, y2, z2) with z2 unknown. Application of the formula for distance between two coordinates


results in one equation with one unknown, in which we can solve for z2. One of x1, x2, y1, y2, z1, or z2 can be unknown.

Contrary to the classical equipartition theorem, at room temperature, the vibrational motion of molecules typically makes negligible contributions to the heat capacity. This is because these degrees of freedom are frozen because the spacing between the energy eigenvalues exceeds the energy corresponding to ambient temperatures (kBT). In the following table such degrees of freedom are disregarded because of their low effect on total energy. However, at very high temperatures they cannot be neglected.

Monatomic Linear molecules Non-linear molecules
Translation (x, y, and z) 3 3 3
Rotation (x, y, and z) 0 2 3
Vibration 0 3N − 5 3N − 6
Total 3 3N 3N

Independent degrees of freedom

The set of degrees of freedom X1, ... , XN of a system is independent if the energy associated with the set can be written in the following form:

E = \sum_{i=1}^N E_i(X_i),

where Ei is a function of the sole variable Xi.

example: if X1 and X2 are two degrees of freedom, and E is the associated energy:

  • If E = X_1^4 + X_2^4, then the two degrees of freedom are independent.
  • If E = X_1^4 + X_1 X_2 + X_2^4, then the two degrees of freedom are not independent. The term involving the product of X1 and X2 is a coupling term, that describes an interaction between the two degrees of freedom.

For i from 1 to N, the value of the ith degree of freedom Xi is distributed according to the Boltzmann distribution. Its probability density function is the following:

p_i(X_i) = \frac{e^{-\frac{E_i}{k_B T}}}{\int dX_i \, e^{-\frac{E_i}{k_B T}}},

In this section, and throughout the article the brackets \langle \rangle denote the mean of the quantity they enclose.

The internal energy of the system is the sum of the average energies associated to each of the degrees of freedom:

\langle E \rangle = \sum_{i=1}^N \langle E_i \rangle.

Quadratic degrees of freedom

A degree of freedom Xi is quadratic if the energy terms associated to this degree of freedom can be written as

E = \alpha_i\,\,X_i^2 + \beta_i \,\, X_i Y ,

where Y is a linear combination of other quadratic degrees of freedom.

example: if X1 and X2 are two degrees of freedom, and E is the associated energy:

  • If E = X_1^4 + X_1^3 X_2 + X_2^4, then the two degrees of freedom are not independent and non-quadratic.
  • If E = X_1^4 + X_2^4, then the two degrees of freedom are independent and non-quadratic.
  • If E = X_1^2 + X_1 X_2 + 2X_2^2, then the two degrees of freedom are not independent but are quadratic.
  • If E = X_1^2 + 2X_2^2, then the two degrees of freedom are independent and quadratic.

For example, in Newtonian mechanics, the dynamics of a system of quadratic degrees of freedom are controlled by a set of homogeneous linear differential equations with constant coefficients.

Quadratic and independent degree of freedom

X1, ... , XN are quadratic and independent degrees of freedom if the energy associated to a microstate of the system they represent can be written as:

E = \sum_{i=1}^N \alpha_i X_i^2

Equipartition theorem

In the classical limit of statistical mechanics, at thermodynamic equilibrium, the internal energy of a system of N quadratic and independent degrees of freedom is:

U = \langle E \rangle = N\,\frac{k_B T}{2}

Here, the mean energy associated with a degree of freedom is:

\langle E_i \rangle = \int dX_i\,\,\alpha_i X_i^2\,\, p_i(X_i) = \frac{\int dX_i\,\,\alpha_i X_i^2\,\, e^{-\frac{\alpha_i X_i^2}{k_B T}}}{\int dX_i\,\, e^{-\frac{\alpha_i X_i^2}{k_B T}}}
\langle E_i \rangle = \frac{k_B T}{2}\frac{\int dx\,\,x^2\,\, e^{-\frac{x^2}{2}}}{\int dx\,\, e^{-\frac{x^2}{2}}} = \frac{k_B T}{2}

Since the degrees of freedom are independent, the internal energy of the system is equal to the sum of the mean energy associated with each degree of freedom, which demonstrates the result.


The description of a system's state as a point in its phase space, although mathematically convenient, is thought to be fundamentally inaccurate. In quantum mechanics, the motion degrees of freedom are superseded with the concept of wave function, and operators which correspond to other degrees of freedom have discrete spectra. For example, intrinsic angular momentum operator (which corresponds to the rotational freedom) for an electron or photon have only two eigenvalues, and a continuous rotational freedom of classical bodies becomes reduced to so named spin for these and other microscopic particles. This effect of discreteness (sometimes referred to as quantization, although the latter is a much broader concept) becomes dominant when action has an order of magnitude of the Planck constant, and individual degrees of freedom cannot be distinguished then.


  1. ^ Reif, F. (2009). Fundamentals of Statistical and Thermal Physics. Long Grove, IL: Waveland Press, Inc. p. 51.  
  2. ^ Thomas Waldmann, Jens Klein, Harry E. Hoster, R. Jürgen Behm (2012), "Stabilization of Large Adsorbates by Rotational Entropy: A Time-Resolved Variable-Temperature STM Study" (in German), ChemPhysChem: pp. n/a–n/a, doi:10.1002/cphc.201200531
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.