This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000235195 Reproduction Date:
Dietary elements (commonly known as dietary minerals) or mineral nutrients are the archaic, as the substances it refers to are chemical elements rather than actual minerals.
Chemical elements in order of abundance in the human body include the seven major dietary elements calcium, phosphorus, potassium, sulfur, sodium, chlorine, and magnesium. Important "trace" or minor dietary elements, necessary for mammalian life, include iron, cobalt, copper, zinc, manganese, molybdenum, iodine, bromine, and selenium.
Over twenty dietary elements are necessary for mammals, and several more for various other types of life. The total number of chemical elements that are absolutely needed is not known for any organism. Ultratrace amounts of some elements (e.g., boron, chromium) are known to clearly have a role but the exact biochemical nature is unknown, and others (e.g. arsenic, silicon) are suspected to have a role in health, but without proof.
Most geophagia) and visit salt licks to obtain limiting dietary elements they are unable to acquire through other components of their diet.
Bacteria play an essential role in the weathering of primary elements that results in the release of nutrients for their own nutrition and for the nutrition of others in the ecological biominerals.
At least twenty chemical elements are known to be required to support human biochemical processes by serving structural and functional roles as well as electrolytes.[1] However, as many as twenty-nine elements in total (including the common hydrogen, carbon, nitrogen and oxygen) are suggested to be used by mammals, as a result of studies of biochemical, special uptake, and metabolic handling studies.[2] However, many of these additional elements have no well-defined biochemical function known at present. Most of the known and suggested dietary elements are of relatively low atomic weight, and are reasonably common on land, or at least, common in the ocean (iodine, sodium):
highlighting dietary elements
The following play important roles in biological processes:
Dietary elements are present in a healthy human being's blood at certain mass and molar concentrations. The figure below presents the concentrations of each of the dietary elements discussed in this article, from center-right to the right. Depending on the concentrations, some are in upper part of the picture, while others are in the lower part. The figure includes the relative values of other constituents of blood such as hormones. In the figure, dietary elements are color highlighted in purple.
Dietitians may recommend that dietary elements are best supplied by ingesting specific foods rich with the chemical element(s) of interest. The elements may be naturally present in the food (e.g., calcium in dairy milk) or added to the food (e.g., orange juice fortified with calcium; iodized salt, salt fortified with iodine). Dietary supplements can be formulated to contain several different chemical elements (as compounds), a combination of vitamins and/or other chemical compounds, or a single element (as a compound or mixture of compounds), such as calcium (as carbonate, citrate, etc.) or magnesium (as oxide, etc.), chromium (usually as picolinate) or iron (as bis-glycinate).
The dietary focus on chemical elements derives from an interest in supporting the
Most minerals are inorganic in nature. Mineral nutrients refers to the smaller class of Flagellates are effective bacteriovores and are also commonly found in the marine water column. The flagellates are preyed upon by zooplankton while the phytoplankton concentrates on the larger particulate matter that is suspended in the water column as they are consumed by larger zooplankton, with fish as the top predator. Mineral nutrients cycle through this marine food chain, from bacteria and phytoplankton to flagellates and zooplankton who are then eaten by fish. The bacteria are important in this chain because only they have the physiological ability to absorb the dissolved mineral nutrients from the sea. These recycling principals from marine environments apply to many soil and freshwater ecosystems as well.[46][47]
[43][42][41] Biologists and geologists have only recently started to appreciate the magnitude of mineral :621[40] Recent studies have shown a tight linkage between living organisms and chemical elements on this planet. This led to the redefinition of minerals as "an element or compound, amorphous or crystalline, formed through 'biogeochemical' processes. The addition of `bio' reflects a greater appreciation, although an incomplete understanding, of the processes of mineral formation by living forms."
Many elements have been suggested as essential, but such claims have usually not been confirmed. Definitive evidence for efficacy comes from the characterization of a biomolecule containing the element with an identifiable and testable function. One problem with identifying efficacy is that some elements are innocuous at low concentrations and are pervasive (examples: silicon and nickel in solid and dust), so proof of efficacy is lacking because deficiencies are difficult to reproduce.[20]
[21]
Magnesium, Lead, Copper, Aluminium, Sodium
Iron, Carbon, Calcium, Manganese, Helium
Chlorine, Bromine, Xenon, Periodic table, Astatine
Manganese, Aluminium, Iron, Oxygen, Silicon
Argon, Sodium, Hydrogen, Rubidium, Calcium
National Institutes of Health, Vitamins, Alternative medicine, United Kingdom, Vitamin
Alternative medicine, Pseudoscience, Vitamin C, Vitamin, Orthomolecular medicine
B vitamins, Meat, Vitamin C, Vitamin D, Vitamin E
Cancer, Methionine, Methylation, Obesity, Choline
Gut flora, Kimchi, Vitamin K, Calcium, Chromium