World Library  
Flag as Inappropriate
Email this Article

Enterostatin

Article Id: WHEBN0006342648
Reproduction Date:

Title: Enterostatin  
Author: World Heritage Encyclopedia
Language: English
Subject: Eating, Colipase, Digestive system, Peptides, Weight loss
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Enterostatin

Enterostatin
Names
IUPAC name
(2S)-2-[[(2S)-1-[2-[[(2S)-1-[(2S)-2-aminopropanoyl]pyrrolidine-2-carbonyl]amino]acetyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid
Other names
Procolipase activation peptide; APGPR; L-Alanyl-L-prolylglycyl-L-prolyl-L-arginine
Identifiers
 YesY
ChemSpider  N
Jmol-3D images Image
PubChem
Properties
C21H36N8O6
Molar mass 496.57 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 N  (: YesY/N?)

Enterostatin is a pentapeptide[1] derived from a proenzyme in the gastrointestinal tract called procolipase. It reduces food intake, in particular fat intake,[2] when given peripherally or into the brain.[3]

Contents

  • Function 1
  • Signaling pathway 2
  • Effects 3
  • Medical trials 4
  • References 5

Function

Enterostatin is created in the intestine by pancreatic procolipase, the other colipase serving as an obligatory cofactor for pancreatic lipase during fat digestion. Enterostatin can be created in the gastric mucosa and the mucosal epithelia in the small intestine. An increased high fat diets will cause the procolipase gene transcription and enterostatin to release into the gastrointestinal lumen. Enterostatin appears in the lymph and circulation after a meal. Enterostatin has been shown to selectively reduce fat intake during a normal meal. The testing has been successful with different species.

Signaling pathway

The signaling pathway of the peripheral mechanism uses afferent vagal to hypothalamic centers. The central responses are mediated through a pathway including serotonergic and opioidergic components. Inveterately, enterostatin cuts fat intake, bodyweight, and body fat. This reaction may involve multiple metabolic effects of enterostatin, which include a decrease of insulin secretion,[4] a growth in sympathetic drive to brown adipose tissue, and the stimulation of adrenal corticosteroid secretion. A possible pathophysiological role is indicated by studies that have associated low enterostatin output and/or responsiveness to breeds of rat that become obese and prefer dietary fat. Humans with obesity also exhibit a lower secretion from pancreatic procolipase after a test meal, compared with persons of normal weight.[3]

Effects

Its effects include a reduction of insulin secretion, an increase in sympathetic drive to brown adipose tissue, and the stimulation of adrenal corticosteroid secretion. At the end level, it initiates a sensation of fullness of stomach which could be the reason for its role in regulation of fat intake and reduction of body weight. For enterostatin to be utilized it needs the presence of CCK A receptors. Studies based on rats who lack these receptors have found them to be un-responsive to enterostatin.[5]

When rats have been injected with high doses of enterostatin into the brain the rats ate progressively less food as the dose was increased.[6]:969 In rats, examination of experiments involving the effects of peripheral or intracerebroventricular administration of enterostatin show this selectively slows down fat consumption.[7]:8

Medical trials

Although enterostatin-like immunoreactivities exist in blood, brain, and gut, and exogenous enterostatins decrease fat appetite and insulin secretion in rats, the roles of these peptides in human obesity remain to be examined.,[8]

References

  1. ^
  2. ^
  3. ^ a b
  4. ^
  5. ^
  6. ^
  7. ^
  8. ^
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.