World Library  
Flag as Inappropriate
Email this Article

Ferromagnetic superconductor

Article Id: WHEBN0014810768
Reproduction Date:

Title: Ferromagnetic superconductor  
Author: World Heritage Encyclopedia
Language: English
Subject: Magnetic field, Helimagnetism, Superferromagnetism, Mictomagnetism, Magnetic structure
Collection: Magnetic Ordering, Superconductivity
Publisher: World Heritage Encyclopedia

Ferromagnetic superconductor

Ferromagnetic superconductors are materials that display intrinsic coexistence of ferromagnetism and superconductivity. They include UGe2,[1] URhGe,[2] and UCoGe.[3] Evidence of ferromagnetic superconductivity was also reported for ZrZn2 in 2001, but later reports[4] question these findings. These materials exhibit superconductivity in proximity to a magnetic quantum critical point.

The nature of the superconducting state in ferromagnetic superconductors is currently under debate. Early investigations[5] studied the coexistence of conventional s-wave superconductivity with itinerant ferromagnetism. However, the scenario of spin-triplet pairing soon gained the upper hand.[6][7] A mean-field model for coexistence of spin-triplet pairing and ferromagnetism was developed in 2005,[8][9]

These models consider uniform coexistence of ferromagnetism and superconductivity, i.e. the same electrons which are both ferromagnetic and superconducting at the same time. Another scenario where there is an interplay between magnetic and superconducting order in the same material is superconductors with spiral or helical magnetic order. Examples of such include ErRh4B4 and HoMo6S8. In these cases, the superconducting and magnetic order parameters entwine each other in a spatially modulated pattern, which allows for their mutual coexistence, although it is no longer uniform. Even spin-singlet pairing may coexist with ferromagnetism in this manner.


In conventional superconductors, the electrons constituting the Cooper pair have opposite spin, forming so-called spin-singlet pairs. However, other types of pairings are also permitted by the governing Pauli-principle. In the presence of a magnetic field, spins tend to align themselves with the field, which means that a magnetic field is detrimental for the existence of spin-singlet Cooper pairs. A viable mean-field Hamiltonian for modelling itinerant ferromagnetism coexisting with a non-unitary spin-triplet state may after diagonalization be written as:[8][9]

H = H_0 + \sum_{\mathbf{k}\sigma} E_{\mathbf{k}\sigma}\gamma_{\mathbf{k}\sigma}^\dagger \gamma_{\mathbf{k}\sigma},

H_0 = \frac{1}{2} \sum_{\mathbf{k}\sigma}(\xi_{\mathbf{k}\sigma} - E_{\mathbf{k}\sigma} - \Delta_{\mathbf{k}\sigma}^\dagger b_{\mathbf{k}\sigma}) + INM^2/2,

E_{\mathbf{k}\sigma} = \sqrt{\xi_{\mathbf{k}\sigma}^2 + |\Delta_{\mathbf{k}\sigma}|^2}.


  1. ^ Saxena, S. S.; Agarwal, P; Agarwal, P.; Ahilan, K.; Grosche, F. M.; Haselwimmer, R. K. W.; Steiner, M. J.; Pugh, E. et al. (2000). "Superconductivity on the border of itinerant-electron ferromagnetism in UGe2". Nature 406 (6796): 587–92.  
  2. ^ Aoki, Dai; Huxley, Andrew; Ressouche, Eric; Braithwaite, Daniel; Flouquet, Jacques; Brison, Jean-Pascal; Lhotel, Elsa; Paulsen, Carley (2001). "Coexistence of superconductivity and ferromagnetism in URhGe". Nature 413 (6856): 613–6.  
  3. ^ Huy, N.; Gasparini, A.; De Nijs, D.; Huang, Y.; Klaasse, J.; Gortenmulder, T.; De Visser, A.; Hamann, A.; G�rlach, T.; Löhneysen, H. (2007). "Superconductivity on the border of weak itinerant ferromagnetism in UCoGe". Physical Review Letters 99 (6): 67006.  
  4. ^ Yelland, E.; Hayden, S.; Yates, S.; Pfleiderer, C.; Uhlarz, M.; Vollmer, R.; L�hneysen, H.; Bernhoeft, N.; Smith, R.; Saxena, S.S.; Kimura, N. (2005). "Superconductivity induced by spark erosion in ZrZn2". Physical Review B 72 (21): 214523.  
  5. ^ Coexistence of superconductivity and ferromagnetism in ferromagnetic metals
  6. ^ MacHida, Kazushige; Ohmi, Tetsuo (2001). "Theory of Ferromagnetic Superconductivity". Physical Review Letters 86 (5): 850–3.  
  7. ^ Samokhin, K.; Walker, M. (2002). "Order parameter symmetry in ferromagnetic superconductors". Physical Review B 66 (17): 174501.  
  8. ^ a b Nevidomskyy, Andriy (2005). "Coexistence of ferromagnetism and superconductivity near quantum phase transition: The Heisenberg- to Ising-type crossover". Physical Review Letters 94 (9): 97003.  
  9. ^ a b Linder, J.; Sudb�, A. (2007). "Quantum transport in noncentrosymmetric superconductors and thermodynamics of ferromagnetic superconductors". Physical Review B 76 (5): 54511.  

Further reading

  • Soltan Soltan (2005). Interaction of Superconductivity and Ferromagnetism in YBCO-LCMO. Cuvillier Verlag. p. 1.  
  • T Herrmannsdörfer & F Pobell (2003). "The interplay of superconductivity and nuclear magnetism". In Israel D. Vagner, Peter Wyder, Tsofar Maniv. Recent trends in theory of physical phenomena in high magnetic fields. Springer. p. 18.  
  • T Moriya & K Ueda; Ueda (2003). "Antiferromagnetic spin fluctuation and superconductivity". Rep Prog Phys 66 (8): 1299–1341.  
  • Ferromagnetic superconductors – List of Authority Articles on
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.