 #jsDisabledContent { display:none; } My Account | Register | Help Flag as Inappropriate This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate?          Excessive Violence          Sexual Content          Political / Social Email this Article Email Address:

# Heptagonal number

Article Id: WHEBN0000509019
Reproduction Date:

 Title: Heptagonal number Author: World Heritage Encyclopedia Language: English Subject: Collection: Figurate Numbers Publisher: World Heritage Encyclopedia Publication Date:

### Heptagonal number

A heptagonal number is a figurate number that represents a heptagon. The n-th heptagonal number is given by the formula

\frac{5n^2 - 3n}{2}.

The first few heptagonal numbers are:

1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, … (sequence A000566 in OEIS)

## Contents

• Parity 1
• Generalized heptagonal numbers 2
• Sum of reciprocals 3
• Heptagonal roots 4
• Derivation of heptagonal root formula 4.1
• References 5

## Parity

The parity of heptagonal numbers follows the pattern odd-odd-even-even. Like square numbers, the digital root in base 10 of a heptagonal number can only be 1, 4, 7 or 9. Five times a heptagonal number, plus 1 equals a triangular number.

## Generalized heptagonal numbers

A generalized heptagonal number is obtained by the formula

T_n + T_{\lfloor \frac{n}{2} \rfloor},

where Tn is the nth triangular number. The first few generalized heptagonal numbers are:

1, 4, 7, 13, 18, 27, 34, 46, 55, 70, 81, 99, 112, … (sequence A085787 in OEIS)

Every other generalized heptagonal number is a regular heptagonal number. Besides 1 and 70, no generalized heptagonal numbers are also Pell numbers.

## Sum of reciprocals

A formula for the sum of the reciprocals of the heptagonal numbers is given by:

\sum_{n=1}^\infty \frac{2}{n(5n-3)} = \frac{1}{15}{\pi}{\sqrt{25-10\sqrt{5}}}+\frac{2}{3}\ln(5)+\frac{3}\ln\left(\frac{1}{2}\sqrt{10-2\sqrt{5}}\right)+\frac{3}\ln\left(\frac{1}{2}\sqrt{10+2\sqrt{5}}\right)

## Heptagonal roots

In analogy to the square root of x, one can calculate the heptagonal root of x, meaning the number of terms in the sequence up to and including x.

The heptagonal root of x is given by the formula

n = \frac{\sqrt{40x + 9} + 3}{10}.

### Derivation of heptagonal root formula

The heptagonal roots n of x are derived by:

x = \frac{5n^2 - 3n}{2}
2x = 5n^2 - 3n
5n^2 - 3n - 2x = 0
n = \frac{-(-3) \pm \sqrt{(-3)^2 - (4 \times 5 \times -2x)}}{2 \times 5} (use quadratic formula to solve for n)
n = \frac{3 \pm \sqrt{9 - (-40x)}}{10}
n = \frac{3 \pm \sqrt{9 + 40x}}{10}

Rearrange this to:

n = \frac{\pm \sqrt{40x + 9} + 3}{10},

and taking the only positive value gives the formula for n associated with a given x.