Incretins are a group of gastrointestinal hormones that cause an increase in the amount of insulin released from the beta cells of the islets of Langerhans after eating, even before blood glucose levels become elevated. They also slow the rate of absorption of nutrients into the blood stream by reducing gastric emptying and may directly reduce food intake. As expected, they also inhibit glucagon release from the alpha cells of the Islets of Langerhans. The two main candidate molecules that fulfill criteria for an incretin are glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide (also known as: glucose-dependent insulinotropic polypeptide or GIP). Both GLP-1 and GIP are rapidly inactivated by the enzyme dipeptidyl peptidase-4 (DPP-4).

GLP-1 (7-36) amide is not very useful for treatment of type 2 diabetes mellitus, since it must be administered by continuous subcutaneous infusion. Several long-lasting analogs having insulinotropic activity have been developed, and two, exenatide (Byetta) and liraglutide (Victoza), have been approved for use in the U.S. The main disadvantage of these GLP-1 analogs is they must be administered by subcutaneous injection.

Another approach is to inhibit the enzyme that inactivates GLP-1 and GIP, DPP-4. Several DPP-4 inhibitors that can be taken orally as a tablet have been developed.


In 1902, Bayliss and Starling proposed that the intestinal mucosa contains a hormone, secretin, that stimulates the exocrine secretion of the pancreas.

However, oral administration of extracts of intestinal mucosa failed to help several patients with type 1 diabetes. In 1932, La Barre proposed the name incretin for a hormone extracted from the upper gut mucosa, which caused hypoglycemia, and proposed a possible therapy for diabetes. In 1939–1940, based on their studies, Leow et al. concluded the existence of incretins was "questionable". No further research in this area was performed for about thirty years.

Recent research

In 1970, GIP was isolated and sequenced from intestinal mucosa (JC Brown). Originally named gastric inhibitory peptide, GIP was renamed glucose-dependent insulinotropic peptide in 1973 after Brown and Dupre showed GIP stimulates insulin secretion. However, initial research could not establish its utility as a treatment for diabetes. The anglerfish proglucagon peptide was sequenced in 1982 by Lund and co-workers. The human proglucagon gene was cloned in 1983 by G. Bell, et al., and the human proglucagon sequence was subsequently deduced. However, the entire GLP-1 molecule had no effect on insulin levels. Only one specific sequence of GLP-1 was found to have an insulinotropic effect: GLP-1 (7-36) amide. It is rapidly inactivated to GLP-1 (9-36) by DPP-4 with a plasma half-life of only 1–2 minutes. GIP is also rapidly inactivated by DPP-4 to GIP (3-42).

See also

  • Glucagon-like peptide-1 analog
    • exenatide - first FDA approved "incretin mimetic"
    • liraglutide - second FDA approved "incretin mimetic"


External links

  • - site of Dr D.J. Drucker's laboratory that studies incretins
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.