World Library  
Flag as Inappropriate
Email this Article

Insulin-like growth factor

Article Id: WHEBN0000015000
Reproduction Date:

Title: Insulin-like growth factor  
Author: World Heritage Encyclopedia
Language: English
Subject: Growth factor, MTOR inhibitors, List of human hormones, Pregnancy-associated plasma protein A, Visual impairment due to intracranial pressure
Publisher: World Heritage Encyclopedia

Insulin-like growth factor


The insulin-like growth factors (IGFs) are proteins with high sequence similarity to insulin. IGFs are part of a complex system that cells use to communicate with their physiologic environment. This complex system (often referred to as the IGF "axis") consists of two cell-surface receptors (IGF1R and IGF2R), two ligands (Insulin-like growth factor 1 (IGF-I) and Insulin-like growth factor 2 (IGF-2)), a family of six high-affinity IGF-binding proteins (IGFBP-1 to IGFBP-6), as well as associated IGFBP degrading enzymes, referred to collectively as proteases.

IGF1/GH Axis

The IGF "axis" is also commonly referred to as the Growth Hormone/IGF-I Axis. brain, liver, and kidney.

Factors that are thought to cause variation in the levels of GH and IGF-1 in the circulation include an individual's genetic make-up, the time of day, age, sex, exercise status, stress levels, nutrition level, body mass index (BMI), disease state, race, estrogen status, and xenobiotic intake.

IGF-I has an involvement in regulating neural development including neurogenesis, myelination, synaptogenesis, and dendritic branching and neuroprotection after neuronal damage. Increased serum levels of IGF-I in children have been associated with higher IQ.[1]

IGF-I shapes the development of the cochlea through controlling apoptosis. Its deficit can cause hearing loss. Serum level of it also underlies a correlation between short height and reduced hearing abilities particularly around 3–5 years of age, and at age 18 (late puberty).[2]

IGF receptors

The IGFs are known to bind the IGF-1 receptor, the insulin receptor, the IGF-2 receptor, the insulin-related receptor and possibly other receptors. The IGF-1 receptor is the "physiological" receptor—IGF-I binds to it at significantly higher affinity than it binds the insulin receptor. Like the insulin receptor, the IGF-I receptor is a receptor tyrosine kinase—meaning the receptor signals by causing the addition of a phosphate molecule on particular tyrosines. The IGF-2 receptor only binds IGF-2 and acts as a "clearance receptor"—it activates no intracellular signaling pathways, functioning only as an IGF-2 sequestering agent and preventing IGF-2 signaling.

Organs and tissues affected by IGF-I

Since many distinct tissue types express the IGF-1 receptor, IGF-1's effects are diverse. It acts as a neurotrophic factor, inducing the survival of neurons. It may catalyse skeletal muscle hypertrophy, by inducing protein synthesis, and by blocking muscle atrophy. It is protective for cartilage cells, and is associated with activation of osteocytes, and thus may be an anabolic factor for bone. Since at high concentrations it is capable of activating the insulin receptor, it can also complement for the effects of insulin.

IGF-Binding Proteins

IGF-1 and IGF-2 are regulated by a family of proteins known as the IGF-Binding Proteins. These proteins help to modulate IGF action in complex ways that involve both inhibiting IGF action by preventing binding to the IGF-1 receptor as well as promoting IGF action possibly through aiding in delivery to the receptor and increasing IGF half-life. Currently, there are six characterized IGF Binding Proteins (IGFBP-1 to IGFBP-6). There is currently significant data suggesting that IGFBPs play important roles in addition to their ability to regulate IGFs.

Diseases affected by IGF

Studies of recent interest show that the Insulin/IGF axis play an important role in Islets of Langerhans), which sense insulin in response to glucose homeostasis. Moreover, IGF1 affects lifespan in nematodes by causing dauer formation, a developmental stage of C. elegans larva. There is no mammalian correlate. Therefore it is an open question as to whether either IGF-1 or insulin in the mammal may perturb aging, although there is the suggestion that dietary restriction phenomena may be related.

Other studies are beginning to uncover the important role the IGFs play in diseases such as cancer and diabetes, showing for instance that IGF-1 stimulates growth of both prostate and breast cancer cells. Researchers are not in complete agreement about the degree of cancer risk that IGF-1 poses.[5][6][7][8][9]

See also


  1. ^ Gunnell, David; Miller, LL; Rogers, I; Holly, JM; Alspac Study, Team (11/01/2005). "Association of Insulin-like Growth Factor I and Insulin-like Growth Factor-Binding Protein-3 with Intelligence Quotient Among 8- to 9-Year-Old Children in the Avon Longitudinal Study of Parents and Children". Pediatrics 116 (5): e681.  
  2. ^ Welch, D; Dawes, PJ. (2007). "Childhood hearing is associated with growth rates in infancy and adolescence". Pediatr Res 62 (4): 495–8.  
  3. ^ Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, Liu LX, Doberstein SK, Ruvkun G (2001). "Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family".  
  4. ^ Kimura K.D., Tissenbaum H.A., Liu Y., Ruvkun G. (1997). "daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans". Science 277: 942–946. 
  5. ^ Cohen P, Peehl DM, Lamson G, Rosenfeld RG (1991). "Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins in primary cultures of prostate epithelial cells".  
  6. ^ Lippman ME (1993). "The development of biological therapies for breast cancer".  
  7. ^ Papa V, Gliozzo B, Clark GM, McGuire WL, Moore D, Fujita-Yamaguchi Y, Vigneri R, Goldfine ID, Pezzino V (1993). "Insulin-like growth factor-I receptors are overexpressed and predict a low risk in human breast cancer".  
  8. ^ Scarth JP (2006). "Modulation of the growth hormone-insulin-like growth factor (GH-IGF) axis by pharmaceutical, nutraceutical and environmental xenobiotics: an emerging role for xenobiotic-metabolizing enzymes and the transcription factors regulating their expression. A review".  
  9. ^ Woods AG, Guthrie KM, Kurlawalla MA, Gall CM (1998). "Deafferentation-induced increases in hippocampal insulin-like growth factor-1 messenger RNA expression are severely attenuated in middle aged and aged rats".  

External links

  • Growth Factors Dr. Richard Garde
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.