World Library  
Flag as Inappropriate
Email this Article

Izod impact strength test

Article Id: WHEBN0003479910
Reproduction Date:

Title: Izod impact strength test  
Author: World Heritage Encyclopedia
Language: English
Subject: Infobox material/sandbox, Zwick Roell Group, Infobox material/doc, Infobox material, Fracture mechanics
Collection: Continuum Mechanics, Fracture Mechanics, Materials Testing
Publisher: World Heritage Encyclopedia

Izod impact strength test

Izod impact testing is an ASTM standard method of determining the impact resistance of materials. An arm held at a specific height (constant potential energy) is released. The arm hits the sample.The specimen either breaks or the weight rests on the specimen. From the energy absorbed by the sample, its impact energy is determined. A notched sample is generally used to determine impact energy and notch sensitivity.

The test is similar to the Charpy impact test but uses a different arrangement of the specimen under test.[1] The Izod impact test differs from the Charpy impact test in that the sample is held in a cantilevered beam configuration as opposed to a three-point bending configuration.

The test is named after the English engineer Edwin Gilbert Izod (1876–1946), who described it in his 1903 address to the British Association, subsequently published in Engineering.[2]


  • Impact energy 1
  • ASTM test for plastics 2
  • See also 3
  • References 4
  • Further reading 5

Impact energy

Impact is a very important phenomenon in governing the life of a structure. For example, in the case of an aircraft, impact can take place by a bird hitting a plane while it is cruising, or during take off and landing the aircraft may be struck by debris that is present on the runway, and as well as other causes. It must also be calculated for roads if speed breakers are present, in bridge construction where vehicles punch an impact load, etc.

Impact tests are used in studying the toughness of material. A material's toughness is a factor of its ability to absorb energy during plastic deformation. Brittle materials have low toughness as a result of the small amount of plastic deformation that they can endure. The impact value of a material can also change with temperature. Generally, at lower temperatures, the impact energy of a material is decreased. The size of the specimen may also affect the value of the Izod impact test because it may allow a different number of imperfections in the material, which can act as stress risers and lower the impact energy.

ASTM test for plastics

The ASTM International standard for Izod Impact testing of plastics is ASTM D256. The results are expressed in energy lost per unit of thickness (such as ft·lb/in or J/cm) at the notch. Alternatively, the results may be reported as energy lost per unit cross-sectional area at the notch (J/m2 or ft·lb/in2). In Europe, ISO 180 methods are used and results are based only on the cross-sectional area at the notch (J/m2). The dimensions of a standard specimen for ASTM D256 are 63.5 × 12.7 × 3.2 mm (2.5 × 0.5 × 0.125 in). The most common specimen thickness is 3.2 mm (0.125 in), but the width can vary between 3.0 and 12.7 mm (0.118 in and 0.500 in).

See also


  1. ^ M. Joseph Gordon, Jr. Industrial Design of Plastics Products, Wiley 2003, ISBN 0-471-23151-7 p.199
  2. ^ Izod, Gilbert, 'Testing brittleness of steel', Engineering, 25 September 1903, pp. 431-2

Further reading

  • BS EN ISO 180:2001 - "Plastics. Determination of Izod impact strength"
  • BS EN ISO 13802:2006 - "Plastics. Verification of pendulum impact-testing machines. Charpy, Izod and tensile impact-testing"
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.