Juxtacrine signaling

In biology, juxtacrine signalling (or contact-dependent signalling) is a type of cell / cell or cell / extracellular matrix signalling in multicellular organisms that requires close contact. Hence, this stands in contrast to releasing a signaling molecule by diffusion into extracellular space, or the use of long-range conduits like membrane nanotubes and cytonemes (akin to 'bridges'), or the use of extracellular vesicles like exosomes or microvesicles (akin to 'boats'). There are three types of juxtacrine signaling:

  1. A membrane ligand (protein, oligosaccharide, lipid) and a membrane protein of two adjacent cells interact.
  2. A communicating junction links the intracellular compartments of two adjacent cells, allowing transit of relatively small molecules.
  3. An extracellular matrix glycoprotein and a membrane protein interact.

Additionally, in unicellular organisms such as bacteria, juxtacrine signaling refers to interactions by membrane contact. The term "juxtacrine" was originally introduced by Anklesaria et al. (1990) to describe a possible way of signal transduction between TGF alpha and EGFR.[1]

Juxtacrine signaling has been observed for some growth factors, cytokine and chemokine cellular signals, playing an important role in the immune response. It has a critical role in development, particularly of cardiac and neural function. Other types of cell signaling include paracrine signalling and autocrine signalling.

Cell / cell signaling

In this type of signaling, a cell places a specific ligand on the surface of its membrane, and subsequently another cell can bind it with an appropriate cell surface receptor or cell adhesion molecule. An important example is the Notch signalling, notably involved in neural development.[2]

Communicating junctions

Two adjacent cells can construct communicating conduits between their intracellular compartments: gap junctions in animals and plasmodesmas in plants.[2][3]

Gap junctions are made of connexins in vertebrates and innexins in invertebrates. Electrical synapses are electrically conductive gap junctions between neurons. Gap junctions are critical for cardiac myocytes, mice and humans deficient in a particular gap junction protein have severe heart development defects.[4]

Cell / extracellular matrix signaling

The extracellular matrix is composed of glycoproteins (proteins and mucopolysaccharides (glycosaminoglycan)) produced by the organism's cells. They are secreted not only to build a supportive structure but also to provide critical information on the immediate environment to nearby cells. Indeed, the cells can themselves interact by contact with extracellular matrix molecules and as such, this can be considered an indirect cell / cell communication.[2] Cells use mainly the receptor integrin to interact with ECM proteins. This signaling can influence the cell cycle and cellular differentiation.[5]

In unicellular organisms

In addition to releasing signaling molecules into their environment to initiate quorum sensing, bacteria can use contact-dependent signaling through different mechanisms, for such purpose as to inhibit their growth in harsh conditions.[6][7]

See also


External links

  • "Autocrine versus juxtacrine signaling modes" - illustration at sysbio.org
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.