World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000058246
Reproduction Date:

Title: Nitrocellulose  
Author: World Heritage Encyclopedia
Language: English
Subject: Smokeless powder, Explosive material, Celluloid, Badger Army Ammunition Plant, Nitroglycerin
Publisher: World Heritage Encyclopedia


CAS number  YesY
Molecular formula C6H9(NO2)O5
Molar mass Variable
Appearance Yellowish white cotton-like filaments
Melting point 160 to 170 °C (320 to 338 °F; 433 to 443 K) (ignites)
NFPA 704
Flash point 4.4 °C (39.9 °F; 277.5 K)
LD50 10 mg/kg (mouse, IV)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C (77 °F), 100 kPa)
 N   YesY/N?)

Nitrocellulose (also: cellulose nitrate, flash paper, flash cotton, guncotton, flash string) is a highly flammable compound formed by nitrating cellulose through exposure to nitric acid or another powerful nitrating agent. When used as a propellant or low-order explosive, it was originally known as guncotton. If the cellulose is not fully nitrated then it has found uses as a plastic film and in inks and wood coatings.[2] Nitrocellulose plasticized by camphor was used by Kodak, and other suppliers, from the late 1880s as a film base in photography, X-ray films and motion picture films; and was known as nitrate film. After numerous fires caused by unstable nitrate films, safety film started to be used from the 1930s in the case of X-ray stock and from 1948 for motion picture film.



Henri Braconnot discovered in 1832 that nitric acid, when combined with starch or wood fibers, would produce a lightweight combustible explosive material, which he named xyloïdine.[3] A few years later in 1838 another French chemist Théophile-Jules Pelouze (teacher of Ascanio Sobrero and Alfred Nobel) treated paper and cardboard in the same way.[4] Jean-Baptiste Dumas obtained a similar material, which he called nitramidine.[5] These substances were highly unstable and were not practical explosives.

However, around 1846 Christian Friedrich Schönbein, a German-Swiss chemist, discovered a more practical solution.[6]

As he was working in the kitchen of his home in Basel, he spilled a bottle of concentrated nitric acid on the kitchen table. He reached for the nearest cloth, a cotton apron, and wiped it up. He hung the apron on the stove door to dry, and, as soon as it was dry, there was a flash as the apron exploded. His preparation method was the first to be widely imitated—one part of fine cotton wool to be immersed in fifteen parts of an equal blend of sulfuric and nitric acids. After two minutes, the cotton was removed and washed in cold water to set the esterification level and remove all acid residue. It was then slowly dried at a temperature below 40 °C (about 100°F). Schönbein collaborated with the Frankfurt professor Rudolf Christian Böttger, who had discovered the process independently in the same year. By coincidence, a third chemist, the Brunswick professor F. J. Otto had also produced guncotton in 1846 and was the first to publish the process, much to the disappointment of Schönbein and Böttger.[7]

The process uses nitric acid to convert cellulose into cellulose nitrate and water:

3HNO3+ C6H10O5 → C6H7(NO2)3O5 + 3H2O

The sulfuric acid is present as a catalyst to produce the nitronium ion, NO2+. The reaction is first order and proceeds by electrophilic substitution at the C-OH centers of the cellulose.[8]

Industrial production

Pure nitrocellulose.

The power of guncotton made it suitable for blasting. As a projectile driver, it had around six times the gas generation of an equal volume of black powder and produced less smoke and less heating.

The patent rights for the manufacture of gun cotton were obtained by John Hall & Son in 1846, and industrial manufacture of the explosive began at a purpose-built factory at Faversham’s Marsh Works in Kent, England a year later. However, the manufacturing process was not properly understood and there were few safety measures put in place. A serious explosion in July of that year killed almost two dozen workers, resulting in the immediate closure of the plant. Guncotton manufacture ceased for over 15 years until a safer procedure could be developed.[9]

Further research indicated the importance of very careful washing of the acidified cotton. Unwashed nitrocellulose (sometimes called pyrocellulose) may spontaneously ignite and explode at room temperature, as the evaporation of water results in the concentration of unreacted acid.[10]

The British chemist Frederick Augustus Abel, developed the first safe process for guncotton manufacture, which he patented in 1865. The washing and drying times of the nitrocellulose were both extended to 48 hours and repeated eight times over. The acid mixture was changed to two parts sulfuric acid to one part nitric. Nitration can be controlled by adjusting acid concentrations and reaction temperature. Nitrocellulose is soluble in a mixture of alcohol and ether until nitrogen concentration exceeds 12 percent. Soluble nitrocellulose, or a solution thereof, is sometimes called collodion.[11]

Various types of smokeless powder, consisting primarily of nitrocellulose.

Guncotton containing more than 13 percent nitrogen (sometimes called insoluble nitrocellulose) was prepared by prolonged exposure to hot, concentrated acids[11] for limited use as a blasting explosive or for warheads of underwater weapons like naval mines and torpedoes.[10] Guncotton, dissolved at approximately 25% in acetone, forms a lacquer used in preliminary stages of wood finishing to develop a hard finish with a deep lustre. It is normally the first coat applied, sanded and followed by other coatings that bond to it.

Safe and sustained production of guncotton began at the Waltham Abbey Royal Gunpowder Mills in the 1860s, and the material rapidly became the dominant explosive, becoming the standard for military warheads, although it remained too potent to be used as a propellant. More stable and slower burning collodion mixtures were eventually prepared using less concentrated acids at lower temperatures for smokeless powder in firearms. The first practical smokeless powder made from nitrocellulose, for firearms and artillery ammunition, was invented by French chemist Paul Vieille in 1884.

Jules Verne viewed the development of guncotton with optimism. He referred to the substance several times in his novels. His adventurers carried firearms employing this substance. The most noteworthy reference is in his From the Earth to the Moon, in which guncotton was used to launch a projectile into space.

Nitrate film

Nitrocellulose film on a light box, showing deterioration. From Library and Archives Canada collection.

On May 2, 1887, Hannibal Goodwin filed a patent for "a photographic pellicle and process of producing same ... especially in connection with roller cameras", but the patent was not granted until 13 September 1898.[12] In the meantime, George Eastman had already started production of roll-film using his own process.

Nitrocellulose was used as the first flexible film base, beginning with Eastman Kodak products in August, 1889. Camphor is used as a plasticizer for nitrocellulose film, often called nitrate film. Goodwin's patent was sold to Ansco who successfully sued Eastman Kodak for infringement of the patent and was awarded $5,000,000 in 1914 to Goodwin Film.[13]

Nitrate film was used until 1933 for X-ray films (where its flammability hazard was most acute) and for motion picture film until 1951. It was replaced by safety film with an acetate base.

The use of nitrocellulose film for motion pictures led to the requirement for fireproof projection rooms with wall coverings made of asbestos. The US Navy shot a training film for projectionists that included footage of a controlled ignition of a reel of nitrate film, which continued to burn when fully submerged in water. Unlike many other flammable materials, nitrocellulose does not need air to keep burning as the reaction produces oxygen. Once burning, it is extremely difficult to extinguish. Immersing burning film in water may not extinguish it, and could actually increase the amount of smoke produced.[14][15] Owing to public safety precautions, the London Underground forbade transport of movies on its system until well past the introduction of safety film.

Cinema fires caused by ignition of nitrocellulose film stock were the cause of the 1926 Dromcolliher cinema tragedy in County Limerick in which 48 people died and the 1929 Glen Cinema Disaster in Paisley, Scotland which killed 69 children. Today, nitrate film projection is normally highly regulated and requires extensive precautionary measures including extra projectionist health and safety training. Projectors certified to run nitrate films have many precautions, among them the chambering of the feed and takeup reels in thick metal covers with small slits to allow the film to run through. The projector is modified to accommodate several fire extinguishers with nozzles aimed at the film gate. The extinguishers automatically trigger if a piece of flammable fabric placed near the gate starts to burn. While this triggering would likely damage or destroy a significant portion of the projection components, it would prevent a fire which could cause far greater damage. Projection rooms may be required to have automatic metal covers for the projection windows, preventing the spread of fire to the auditorium.

It was found that nitrocellulose gradually decomposes, releasing nitric acid and further catalyzing the decomposition (eventually into a flammable powder). Decades later, storage at low temperatures was discovered as a means of delaying these reactions indefinitely. It is thought that the great majority of films produced during the early twentieth century were lost either through this accelerating, self-catalyzed disintegration or through studio warehouse fires. Salvaging old films is a major problem for film archivists (see film preservation).

Nitrocellulose film base manufactured by Kodak can be identified by the presence of the word Nitrate in dark letters along one edge; the word appearing only in clear letters on a dark background indicates derivation from a nitrate base original negative or projection print, but the film in hand itself may be a later print or copy negative, respectively, made on safety film. Acetate film manufactured during the era when nitrate films were still in use was marked Safety or Safety Film along one edge in dark letters. 8 mm, 9.5 mm and 16 mm film stocks, intended for amateur and other non-theatrical use, were never manufactured with a nitrate base in the west, but there are rumors of 16 mm nitrate film having been produced in the former Soviet Union and/or China.[16]

Replacement filmstocks

Nitrate dominated the market for professional use 35mm motion picture film from the industry's origins to the early 1950s. While cellulose acetate-based so-called "safety film", notably cellulose diacetate and cellulose acetate propionate, was produced in the gauge for small-scale use in niche applications (e.g., printing advertisements and other short films to enable them to be sent through the mails without the need for fire safety precautions), the early generations of safety film base had two major disadvantages relative to nitrate: it was much more expensive to manufacture, and considerably less durable in repeated projection. The cost of the safety precautions associated with the use of nitrate was significantly lower than the cost of using any of the safety bases available before 1948. These drawbacks were eventually overcome with the launch of cellulose triacetate base film by Eastman Kodak in 1948.[17] Cellulose triacetate superseded nitrate as the film industry's mainstay base very quickly: Kodak announced the discontinuation of nitrate manufacture in February 1950.

The crucial advantage cellulose triacetate had over nitrate was that it was no more of a fire risk than paper (the stock is often erroneously referred to as "non-flam": this is not true—it is combustible, but not in as volatile or as dangerous a way as nitrate), while it almost matched the cost and durability of nitrate. It remained in almost exclusive use in all film gauges until the 1980s, when polyester/PET film began to supersede it for intermediate and release printing.[18]

Polyester is much more resistant to polymer degradation than either nitrate or triacetate. Although triacetate does not decompose in as dangerous a way as nitrate does, it is still subject to a process known as deacetylation, often nicknamed "vinegar syndrome" (due to the acetic acid smell of decomposing film) by archivists, which causes the film to shrink, deform, become brittle and eventually unusable. PET, like cellulose mononitrate, is less prone to stretching than other available plastics. By the late 1990s, polyester had almost entirely superseded triacetate for the production of intermediate elements and release prints.

Triacetate remains in use for most camera negative stocks because it can be "invisibly" spliced using solvents during negative assembly, while polyester film can only be spliced using adhesive tape patches or ultrasonically, both of which will leave visible marks in the frame area. Also polyester film is so strong that it will not break under tension and may cause serious damage to expensive camera or projector mechanisms in the event of a film jam, whereas triacetate film breaks easily, reducing the risk of damage. Many were opposed to the use of polyester for release prints for precisely this reason, and because ultrasonic splicers are very expensive items, beyond the budgets of many smaller theaters. However in practice this has not proved to be anything like such a problem as was feared. Rather, with the increased use of automated long-play systems in cinemas, the greater strength of polyester has been a significant advantage in lessening the risk of a film performance being interrupted by a film break.



In general, cotton was used as the cellulose base, and is added to concentrated sulfuric acid and 70% nitric acid cooled to 0 °C to give cellulose trinitrate (or guncotton).

While guncotton is dangerous to store, its risks can be reduced by storing it damped with a variety of liquids. For this reason, accounts of guncotton usage dating from the early 20th Century refer to "wet guncotton".

Nitrate film

Cellulose is treated with sulfuric acid and potassium nitrate to give cellulose mononitrate. This was used commercially as Celluloid, a highly flammable plastic used in the first half of the 20th Century for lacquers and photographic film.[19]


An M13 rocket for the Katyusha launcher on display in the Musée de l'Armée. Its solid-fuel rocket motor was prepared from nitrocellulose.
A nitrocellulose membrane stained with Ponceau S dye for protein detection during western blotting.
Table tennis ball, prepared from nitrocellulose.
  • A nitrocellulose slide, nitrocellulose membrane or nitrocellulose paper is a sticky membrane used for immobilizing nucleic acids in Southern blots and northern blots. It is also used for immobilization of proteins in Western blots and atomic force microscopy[20] for its non-specific affinity for amino acids. Nitrocellulose is widely used as support in diagnostic tests where antigen-antibody binding occur, e.g., pregnancy tests, U-Albumin tests and CRP. Glycine and chloride ions make protein transfer more efficient.
  • In 1846 nitrated cellulose was found to be soluble in ether and alcohol. The solution was named collodion and was soon used as a dressing for wounds.[21] It is still in use today in topical skin applications, such as liquid skin and in the application of salicylic acid, the active ingredient in Compound W wart remover.
  • Adolph Noé developed a method of peeling coal balls using nitrocellulose.[22]
  • In 1851, Frederick Scott Archer invented the Wet Collodion Process as a replacement for albumen in early photographic emulsions, binding light-sensitive silver halides to a glass plate.[23]
  • Magician's flash paper, sheets of paper or cloth made from nitrocellulose, which burn almost instantly with a bright flash leaving no ash.
  • As a medium for cryptographic one-time pads, thus making the disposal of the pad complete, secure, and efficient.
  • Radon tests for alpha track etches.
  • Space flight, nitrocellulose was used by Copenhagen Suborbitals on several missions as a means of jettisoning components of the rocket/space capsule and deploying recovery systems. However after several missions and flights it proved not to have the desired explosive properties in a near vacuum environment.[24]
  • Nitrocellulose lacquer was used as a finish on guitars and saxophones for most of the 20th century and is still used on some current applications. Manufactured by (among others) DuPont, the paint was also used on automobiles sharing the same color codes as many guitars including Fender and Gibson brands,[25] although it fell out of favor for a number of reasons: pollution, and the way the lacquer yellows and cracks over time.
  • Nitrocellulose lacquer is also used as an aircraft dope, painted onto fabric-covered aircraft to tauten and provide protection to the material.
  • It is also used to coat playing cards and to hold staples together in office staplers.
  • Nail polish is made from nitrocellulose lacquer as it is inexpensive, dries quickly and is non-damaging to skin.
  • Nitrocellulose lacquer is spin-coated onto aluminum or glass discs, then a groove is cut with a lathe, to make one-off phonograph records, used as masters for pressing or for play in dance clubs. They are referred to as acetate discs.
  • Depending on the manufacturing process, nitrocellulose is esterified to varying degrees. Table tennis balls, guitar picks and some photographic films have a fairly low esterification level and burn comparatively slowly with some charred residue. See celluloid.

Because of its explosive nature, not all applications of nitrocellulose were successful. In 1869, with elephants having been poached to near extinction, the billiards industry offered a $10,000 prize to whoever came up with the best replacement for ivory billiard balls. John Wesley Hyatt created the winning replacement, which he created with a new material he discovered called camphored nitrocellulose—the first thermoplastic, better known as celluloid. The invention enjoyed a brief popularity, but the Hyatt balls were extremely flammable, and sometimes portions of the outer shell would explode upon impact. An owner of a billiard saloon in Colorado wrote to Hyatt about the explosive tendencies, saying that he did not mind very much personally but for the fact that every man in his saloon immediately pulled a gun at the sound.[26][27] The process used by Hyatt to manufacture the billiard balls (US Patent 239,792, 1881) involved placing the mass of nitrocellulose in a rubber bag, which was then placed in a cylinder of liquid and heated. Pressure was applied to the liquid in the cylinder, which resulted in a uniform compression on the nitrocellulose mass, compressing it into a uniform sphere as the heat vaporized the solvents. The ball was then cooled and turned to make a uniform sphere. In light of the explosive results, this process was called the "Hyatt Gun Method".[28]

See also


  1. ^ Merck Index, 11th Edition, 8022.
  2. ^
  3. ^ H. Braconnot (1833) "De la transformation de plusieurs substances végétales en un principe nouveau" (On the transformation of several vegetal substances into a new substance), Annales de Chimie et de Physique, 52 : 290-294. On page 293, Braconnot names nitrocellulose xyloïdine.
  4. ^ J. Pelouze (1838) "Sur les produits de l'action de l'acide nitrique concentré sur l'amidon et le ligneux" (On the products of the action of concentrated nitric acid on starch and wood), Comptes rendus … , 7 : 713-715.
  5. ^ Jean-Baptiste Dumas, Traité de Chimie Appliquée aux Arts (Paris, France: Bechet Jeune, 1843), vol. 6, page 90. From page 90: Il y a quelques années, M. Braconnot reconnut que l'acide nitrique concentré, convertit l'amidon, le ligneux, la cellulose, et quelques autres substances en un matière qu'il nomma xyloïdine, et que j'appellerai nitramidine. (Some years ago, Mr. Braconnot recognized that concentrated nitric acid converted starch, wood, cellulose, and some other substances into a material that he called xyloïdine, and that I will call nitramidine.)
  6. ^ Schönbein first communicated his discovery to the Naturforschende Gesellschaft of Basel, Switzerland on March 11, 1846:
    • Schönbein (March 11, 1846) "Notiz über eine Veränderung der Pflanzenfaser und einiger andern organischen Substanzen" (Notice on a change of plant fibers and some other organic substances), Bericht über die Verhandlungen der Naturforschenden Gesellschaft in Basel (Report on the Proceedings of the Natural Science Research Society in Basel), 7 : 26-27.
    • Schönbein (May 27, 1846) "Ueber Schiesswolle" (On guncotton) Bericht über die Verhandlungen der Naturforschenden Gesellschaft in Basel, 7 : 27.
    In a letter, he subsequently communicated his discovery to the French Academy of Sciences:
    • (Schönbein) (1846) "Lettre de M. Schoenbein à M. Dumas," Comptes rendus … , 23 : 678-679.
  7. ^ Itzehoer Wochenblatt, 29 October 1846, columns 1626 f.
  8. ^ Urbanski, Tadeusz, Chemistry and Technology of Explosives, Pergamon Press, Oxford, 1965, Vol 1, pp 20–21.
  9. ^ Clive Ponting (2011). Gunpowder: An Explosive History - from the Alchemists of China to the Battlefields of Europe. Random House. 
  10. ^ a b Fairfield, A. P., CDR USN. Naval Ordnance. Lord Baltimore Press (1921) pages 28–31.
  11. ^ a b Brown, G.I. (1998). The Big Bang: A history of Explosives. Sutton Publishing p.132 ISBN 0-7509-1878-0
  12. ^ U.S. Patent 610,861
  13. ^ "Kodak Concern to Make Big Payment to Goodwin Company.".  
  14. ^ Health and Safety Executive leaflet/cellulose.pdf
  15. ^ Interesting discussion on NC films.
  16. ^ David Cleveland, "Don't Try This at Home: Some Thoughts on Nitrate Film, With Particular Reference to Home Movie Systems" in Roger Smither and Catherine Surowiec (eds.), This Film is Dangerous: A Celebration of Nitrate Film, Brussels, FIAF (2002), ISBN 978-2-9600296-0-4, p. 196
  17. ^ Charles Fordyce et al., "Improved Safety Motion Picture Film Support", Journal of the SMPE, vol. 51 (October 1948), pp. 331–350
  18. ^ George J. van Schil, 'The Use of Polyester Film Base in the Motion Picture Industry', SMPTE Journal, vol. 89, no. 2 (February 1980), pp. 106–110.
  19. ^
  20. ^ L. Kreplak et al. Atomic Force Microscopy of Mammalian Urothelial Surface. Journal of molecular biology. Volume 374, Issue 2, 23 November 2007, Pages 365–373
  21. ^ See:
    • C. F. Schoenbein (1849) "On ether glue or liquor constringens; and its uses in surgery," The Lancet, 1 : 289-290
    • John Parker Maynard (1848) "Discovery and application of the new liquid adhesive plaster," The Boston Medical and Surgical Journal, 38 : 178-183.
  22. ^ Kraus, E. J. (September 1939). "Adolf Carl Noe". Botanical Gazette ( 
  23. ^ Dr. R Leggat, A History of Photography: The Collodion Process
  24. ^ "In Space No One Can Hear your Nitrocellulose Explode". 
  25. ^ "What is "stand damage"?". 
  26. ^ Connections, James Burke, Volume 9, "Countdown", 29:00 – 31:45, 1978
  27. ^ United States. National Resources Committee (1941). RESEARCH—A NATIONAL RESOURCE. UNITED STATES GOVERNMENT PRINTING OFFICE. p. 29. 
  28. ^ Edward Chauncey Worden (1911). Nitrocellulose Industry, Volume 2. D. Van Nostrand Company. pp. 726–727. 

External links

  • Gun Cotton at The Periodic Table of Videos (University of Nottingham)
  • Nitrocellulose Paper Video (aka:Flash paper)
  • Cellulose, nitrate (Nitrocellulose)—ChemSub Online
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.