World Library  
Flag as Inappropriate
Email this Article

Osculating orbit

Article Id: WHEBN0003571605
Reproduction Date:

Title: Osculating orbit  
Author: World Heritage Encyclopedia
Language: English
Subject: Infobox planet/testcases, SMART-1, Mars, Saturn, Jupiter
Collection: Astrodynamics, Orbital Perturbations
Publisher: World Heritage Encyclopedia

Osculating orbit

In astronomy, and in particular in astrodynamics, the osculating orbit of an object in space at a given moment in time is the gravitational Kepler orbit (i.e. ellipse or other conic) that it would have about its central body if perturbations were not present.[1] That is, it is the orbit that coincides with the current orbital state vectors (position and velocity).

The word "osculate" derives from a Latin word meaning "to kiss". Its use in this context derives from, at any point in time, that an object's osculating orbit is precisely tangent to its actual orbit, with the tangent point being the object's location – and has the same curvature as the orbit would have in the absence of perturbing forces.


  • Kepler elements 1
  • Perturbations 2
  • Parameters 3
  • See also 4
  • References 5
  • External links 6

Kepler elements

An osculating orbit and the object's position upon it can be fully described by the six standard Keplerian orbital elements (osculating elements), which are easy to calculate as long as one knows the object's position and velocity relative to the central body. The osculating elements would remain constant in the absence of perturbations. However, real astronomical orbits experience perturbations that cause the osculating elements to evolve, sometimes very quickly. In cases where general celestial mechanical analyses of the motion have been carried out (as they have been for the major planets, the Moon, and other planetary satellites), the orbit can be described by a set of mean elements with secular and periodic terms. In the case of minor planets, a system of proper orbital elements has been devised to enable representation of the most important aspects of their orbits.


Perturbations that cause an object's osculating orbit to change can arise from:

  • A non-spherical component to the central body (when the central body can be modeled neither with a point mass nor with a spherically symmetrical mass distribution, e.g. when it is an oblate spheroid).
  • A third body or multiple other bodies whose gravity perturbs the object's orbit, for example the effect of the Moon's gravity on objects orbiting Earth.
  • A relativistic correction.
  • A non-gravitational force acting on the body, for example force arising from:


An object's orbital parameters will be different if they are expressed with respect to a non-inertial reference frame (for example, a frame co-precessing with the primary's equator), than if it is expressed with respect to a (non-rotating) inertial reference frame.

Put in more general terms, a perturbed trajectory can be analysed as if assembled of points, each of which is contributed by a curve out of a sequence of curves. Variables parameterising the curves within this family can be called orbital elements. Typically (though not necessarily), these curves are chosen as Keplerian conics, all of which share one focus. In most situations, it is convenient to set each of these curves tangent to the trajectory at the point of intersection. Curves that obey this condition (and also the further condition that they have the same curvature at the point of tangency as would be produced by the object's gravity towards the central body in the absence of perturbing forces) are called osculating, while the variables parameterising these curves are called osculating elements. In some situations, description of orbital motion can be simplified and approximated by choosing orbital elements that are not osculating. Also, in some situations, the standard (Lagrange-type or Delaunay-type) equations furnish orbital elements that turn out to be non-osculating.[2]

See also


  1. ^ Moulton, Forest R. (1970) [1902]. Introduction to Celestial Mechanics (2nd revised ed.). Mineola, NY: Dover.   at pp.322-3.
  2. ^ For details see: Efroimsky, M. (2005). "Gauge Freedom in Orbital Mechanics". Annals of the New York Academy of Sciences 1065: 346–74.  

External links

  • Diagram of a sequence of osculating orbits for the escape from Earth orbit by the ion-driven SMART-1 spacecraft:
  • A sequence of osculating orbits for the approach to the Moon by the SMART-1 spacecraft:
  • restricted 3-Body problemOsculating orbits: on YouTube (min. 4:26)
  • 3-Body Lagrange problemOsculating orbits: on YouTube (min. 4:00)
  • 4-Body Lagrange problemOsculating orbits: on YouTube (min. 1:05)
  • the Pythagorean 3-Body problemOsculating orbits: in: on YouTube (min. 4:26)
  • Asteroid Hazards, Part 3: Finding the PathMinor Planet Center: on YouTube (min. 5:38)
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.