World Library  
Flag as Inappropriate
Email this Article

Protein dimer

Article Id: WHEBN0028617060
Reproduction Date:

Title: Protein dimer  
Author: World Heritage Encyclopedia
Language: English
Subject: Microtubule, Extramacrochaetae, Fibronectin, Cfr10I/Bse634I, BCR (gene)
Collection: Dimers (Chemistry), Proteins
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Protein dimer

Cartoon diagram of a dimer of Escherichia coli galactose-1-phosphate uridylyltransferase (GALT) in complex with UDP-galactose (stick models). Potassium, zinc, and iron ions are visible as purple, gray, and bronze-colored spheres respectively.

In biochemistry, a dimer is a macromolecular complex formed by two, usually non-covalently bound, macromolecules like proteins or nucleic acids. It is a quaternary structure of a protein.

A homo-dimer would be formed by two identical molecules (a process called homodimerization). A hetero-dimer would be formed by two different macromolecules (called heterodimerization).

Most dimers in biochemistry are not connected by covalent bonds. An example of a non-covalent heterodimer would be the enzyme reverse transcriptase, which is composed of two different amino acid chains.[1] An exception is dimers that are linked by disulfide bridges such as the homodimeric protein NEMO.[2]

Some proteins contain specialized domains to ensure dimerization (dimerization domains).

Examples

References

  1. ^ Sluis-Cremer N, Hamamouch N, San Félix A, Velazquez S, Balzarini J, Camarasa MJ (August 2006). "Structure-activity relationships of [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]- 3'-spiro-5' '-(4' '-amino-1' ',2' '-oxathiole-2' ',2' '-dioxide)thymine derivatives as inhibitors of HIV-1 reverse transcriptase dimerization". J. Med. Chem. 49 (16): 4834–41.  
  2. ^ Herscovitch M, Comb W, Ennis T, Coleman K, Yong S, Armstead B, Kalaitzidis D, Chandani S, Gilmore TD (February 2008). "Intermolecular disulfide bond formation in the NEMO dimer requires Cys54 and Cys347". Biochem. Biophys. Res. Commun. 367 (1): 103–8.  

See also

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.