This article will be permanently flagged as inappropriate and made unaccessible to everyone. Are you certain this article is inappropriate? Excessive Violence Sexual Content Political / Social
Email Address:
Article Id: WHEBN0000026229 Reproduction Date:
7,8-Dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]benzo[g]pteridine-2,4-dione[1]
O=C2/N=C\1/N(c3cc(c(cc3/N=C/1C(=O)N2)C)C)C[C@H](O)[C@H](O)[C@H](O)CO
InChI=InChI=1S/C17H20N4O6/c1-7-3-9-10(4-8(7)2)21(5-11(23)14(25)12(24)6-22)15-13(18-9)16(26)20-17(27)19-15/h3-4,11-12,14,22-25H,5-6H2,1-2H3,(H,20,26,27)/t11-,12+,14-/m0/s1 N Key: AUNGANRZJHBGPY-SCRDCRAPSA-N Y
Riboflavin (vitamin B2) is part of the vitamin B group. It is the central component of the cofactors FAD and FMN and as such required for a variety of flavoprotein enzyme reactions including activation of other vitamins. It was formerly known as vitamin G.[2]
Riboflavin is a yellow-orange solid substance with poor solubility in water. It is best known visually as it imparts the color to vitamin supplements and the yellow color to the urine of persons taking it.
The name "riboflavin" comes from "ribose" (the sugar whose reduced form, ribitol, forms part of its structure) and "flavin", the ring-moiety which imparts the yellow color to the oxidized molecule (from Latin flavus, "yellow"). The reduced form, which occurs in metabolism along with the oxidized form, is colorless.
The active forms Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) function as cofactors for a variety of flavoproteine enzyme reactions:
For the molecular mechanism of action see main articles Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD)
Sources of riboflavin are milk, cheese, leaf vegetables, liver, kidneys, legumes, yeast, mushrooms, and almonds.[3]
[5]
The milling of cereals results in considerable loss (up to 60%) of vitamin B2, so white [5] In whole milk, 14% of the flavins are bound noncovalently to specific proteins.[6] Egg white and egg yolk contain specialized riboflavin-binding proteins, which are required for storage of free riboflavin in the egg for use by the developing embryo.
It is used in baby foods, breakfast cereals, pastas, sauces, processed cheese, fruit drinks, vitamin-enriched milk products, and some energy drinks. It is difficult to incorporate riboflavin into many liquid products because it has poor solubility in water, hence the requirement for riboflavin-5'-phosphate (E101a), a more soluble form of riboflavin. Riboflavin is also used as a food coloring and as such is designated in Europe as the E number E101.[7]
Riboflavin is generally stable during the heat processing and normal cooking of foods if light is excluded. The alkaline conditions in which riboflavin is unstable are rarely encountered in foodstuffs. Riboflavin degradation in milk can occur slowly in dark during storage in the refrigerator.[8]
The latest (1998) RDA recommendations for vitamin B2 are similar to the 1989 RDA, which for adults, suggested a minimum intake of 1.2 mg for persons whose caloric intake may be > 2,000 Kcal.[9] The current RDAs for riboflavin for adult men and women are 1.3 mg/day and 1.1 mg/day, respectively; the estimated average requirement for adult men and women are 1.1 mg and 0.9 mg, respectively. Recommendations for daily riboflavin intake increase with pregnancy and lactation to 1.4 mg and 1.6 mg, respectively (1in advanced). For infants, the RDA is 0.3-0.4 mg/day and for children it is 0.6-0.9 mg/day.[10]
Riboflavin deficiency is also called ariboflavinosis. It was originally known as pellagra sin pellagra (pellagra without pellagra), as it exhibits certain similarities to the niacin deficiency pellagra.
In humans the classical syndrom affects the mouth (sore throat, inflammation of the lining of mouth and tongue), angular cheilitis), the eyes (photophobia with bloodshot, itchy, watery eyes), the skin (moist, scaly skin particularly affecting the scrotum or labia majora and the nasolabial folds) and the blood (decreased red blood cell count with normal cell size and hemoglobin content i.e. normochromic normocytic anemia). In children it also results in reduced growth.
About 28 million Americans exhibit a common ‘sub-clinical’ deficiency (2003)[11] characterized by metabolic lesions i.e. a change in biochemical indices (e.g. reduced plasma erythrocyte glutathione reductase levels).
In animals, riboflavin deficiency results in lack of growth, failure to thrive, and eventual death. Experimental riboflavin deficiency in dogs results in growth failure, weakness, ataxia, and inability to stand. The animals collapse, become comatose, and die. During the deficiency state, dermatitis develops together with hair loss. Other signs include corneal opacity, lenticular cataracts, hemorrhagic adrenals, fatty degeneration of the kidney and liver, and inflammation of the mucous membrane of the gastrointestinal tract. Post-mortem studies in rhesus monkeys fed a riboflavin-deficient diet revealed about one-third the normal amount of riboflavin was present in the liver, which is the main storage organ for riboflavin in mammals.
An animal model of riboflavin kinase deficiency has been identified.[12] Since Riboflavin cannot be converted into the catalytically active cofactors without this enzyme a vitamin deficiency syndrome is generated in the model.
Overt clinical signs are rarely seen among inhabitants of the developed countries. The assessment of Riboflavin status is essential for confirming cases with unspecific symptoms where deficiency is suspected.
Riboflavin is continuously excreted in the urine of healthy individuals,[18] making deficiency relatively common when dietary intake is insufficient.[18] Riboflavin deficiency is usually found together with other nutrient deficiencies, particularly of other water-soluble vitamins. A deficiency of riboflavin can be primary - poor vitamin sources in one's daily diet - or secondary, which may be a result of conditions that affect absorption in the intestine, the body not being able to use the vitamin, or an increase in the excretion of the vitamin from the body. Subclinical deficiency has also been observed in women taking oral contraceptives, in the elderly, in people with eating disorders, chronic alcoholism and in diseases such as HIV, inflammatory bowel disease, diabetes and chronic heart disease. Phototherapy to treat jaundice in infants can cause increased degradation of riboflavin, leading to deficiency if not monitored closely.
Treatment involves a diet which includes an adequate amount of riboflavin usually in form of commercially available supplements.
Riboflavin has been used in several clinical and therapeutic situations. For over 30 years, riboflavin supplements have been used as part of the phototherapy treatment of neonatal jaundice. The light used to irradiate the infants breaks down not only bilirubin, the toxin causing the jaundice, but also the naturally occurring riboflavin within the infant's blood, so extra supplementation is necessary.
One clinical trial found that high dose riboflavin appears to be useful alone or along with beta-blockers in the prevention of migraine.[19][20] A dose of 400 mg daily has been used effectively in the prophylaxis of migraines, especially in combination with a daily supplement of magnesium citrate 500 mg and, in some cases, a supplement of coenzyme Q10.[21] However, two other clinical studies have failed to find any significant results for the effectiveness of B2 as a treatment for migraine.[22][23]
Riboflavin in combination with UV light has been shown to be effective in reducing the ability of harmful pathogens found in blood products to cause disease.[24][25][26] When UV light is applied to blood products containing riboflavin, the nucleic acids in pathogens are damaged, rendering them unable to replicate and cause disease.[26][27] Riboflavin and UV light treatment has been shown to be effective for inactivating pathogens in platelets and plasma, and is under development for application to whole blood. Because platelets and red blood cells do not contain a nucleus (i.e. they have no DNA to be damaged) the technique is well-suited for destroying nucleic acid containing pathogens (including viruses, bacteria, parasites, and white blood cells) in blood products.[28]
Recently, riboflavin has been used in a new treatment to slow or stop the progression of the corneal disorder keratoconus. This is called corneal collagen crosslinking (CXL). In corneal crosslinking, riboflavin drops are applied to the patient’s corneal surface. Once the riboflavin has penetrated through the cornea, ultraviolet A light therapy is applied. This induces collagen crosslinking, which increases the tensile strength of the cornea. The treatment has been shown in several studies to stabilize keratoconus.
Treatment for Brown vialetto van laere, fazio londe, and the myopathic form of adult onset coenzyme q10 deficiency.
Because riboflavin is fluorescent under UV light, dilute solutions (0.015-0.025% w/w) are often used to detect leaks or to demonstrate coverage in an industrial system such a chemical blend tank or bioreactor. (See the ASME BPE section on Testing and Inspection for additional details.)
In humans, there is no evidence for riboflavin toxicity produced by excessive intakes, as its low solubility keeps it from being absorbed in dangerous amounts within the digestive tract. Even when 400 mg of riboflavin per day was given orally to subjects in one study for three months to investigate the efficacy of riboflavin in the prevention of migraine headache, no short-term side effects were reported.[10][29][30] Although toxic doses can be administered by injection,[29] any excess at nutritionally relevant doses is excreted in the urine,[31] imparting a bright yellow color when in large quantities.
Various biotechnological processes have been developed for industrial scale riboflavin biosynthesis using different microorganisms, including American Type Culture Collection strain number ATCC 49442), which develops a yellow color due to production of riboflavin while growing on pyridine, but not when grown on other substrates, such as succinic acid.[33]
Vitamin B was originally considered to have two components, a heat-labile vitamin B1 and a heat-stable vitamin B2. In the 1920s, vitamin B2 was thought to be the factor necessary for preventing biotin or vitamin B7). Since both pellagra and vitamin H deficiency were associated with dermatitis, Gyorgy decided to test the effect of vitamin B2 on vitamin H deficiency in rats. He enlisted the service of Wagner-Jauregg in Kuhn’s laboratory. In 1933, Kuhn, Gyorgy, and Wagner found that thiamin-free extracts of yeast, liver, or rice bran prevented the growth failure of rats fed a thiamin-supplemented diet.
Further, the researchers noted that a yellow-green fluorescence in each extract promoted rat growth, and that the intensity of fluorescence was proportional to the effect on growth. This observation enabled them to develop a rapid chemical and bioassay to isolate the factor from egg white in 1933, they called it Ovoflavin. The same group then isolated the same preparation (a growth-promoting compound with yellow-green fluorescence) from whey using the same procedure (lactoflavin). In 1934 Kuhn’s group identified the structure of so-called flavin and synthesized vitamin B2.
: NUT
, ,
, , /,
drug (//)
Database, Chemistry, PubMed, American Chemical Society, National Center for Biotechnology Information
Metadata, Isbn, International Standard Book Number, Prolog, Unicode
Vitamin C, Kava, PubChem, Vitamin D, Nitrogen
B vitamins, Meat, Vitamin C, Vitamin D, Vitamin E
Vitamin C, Peru, Philippines, Sugar, Dietary mineral
Peru, Bolivia, Dietary mineral, Solanaceae, Wheat
Calcium, Iron, Zinc, Copper, Manganese
Vitamin C, Panthenol, Acetylcholine, Vitamin E, Vitamin D