World Library  
Flag as Inappropriate
Email this Article

Secondary dominant

Article Id: WHEBN0000262294
Reproduction Date:

Title: Secondary dominant  
Author: World Heritage Encyclopedia
Language: English
Subject: Augmented sixth chord, Extended chord, Half-diminished seventh chord, Dominant (music), Altered chord
Collection: Chromaticism, Diatonic Functions, Dominant Chords, Secondary Chords
Publisher: World Heritage Encyclopedia

Secondary dominant

The circle of fifths: the dominant or secondary dominant will always be found immediately clockwise of the tonic or tonicized chord and functionally resolves counterclockwise to that chord. For example, in C: V is G and resolves to C, V/V is D and resolves to G.
V of V in C, four-part harmony[1] About this sound Play  .
V of V in C, realized on guitar. About this sound Play  

Secondary dominant (also applied dominant, artificial dominant, or borrowed dominant) is an analytical label for a specific harmonic device, prevalent in the tonal idiom of Western music beginning in the common practice period. It refers to a dominant seventh chord set to resolve to a degree that is not the tonic, with V7/V, the dominant of the dominant, "being the most frequently encountered".[2] The chord to which a secondary dominant progresses can be thought of as a briefly tonicized chord or pitch (tonicizations longer than a phrase are modulations). "The purpose of the secondary dominant is to place emphasis on a chord within the diatonic progression."[3] "Functioning secondary dominants are used when a composer wants to inject a greater feeling of movement into a diatonic progression."[4] The secondary-dominant terminology is still usually applied even if the chord resolution is nonfunctional (for example if V/ii is not followed by ii).[5]


  • Definition and notation 1
  • Normal sequencing or cadence 2
  • History 3
  • Mozart example 4
  • Use in jazz 5
  • Popular music 6
  • Extended dominant 7
  • See also 8
  • Further reading 9
  • References 10
  • External links 11

Definition and notation

The major scale contains seven basic chords, designated with Roman numerals in ascending order. Since the chord on the seventh scale degree is a diminished triad, it is not considered stable, and so only the other six chords may be treated at temporary tonic chords, and so be eligible for an applied dominant. In the key of C major, those six chords are:

Of these chords, V (G major) is said to be the dominant of C major (the dominant of any key is the chord whose root is a fifth above the tonic). However, each of the chords from ii through vi also has its own dominant. For example, vi (A minor) has an E major triad as its dominant. These extra dominant chords are not part of the key of C major as such because they include notes that are not part of the C major scale. Instead, they are the secondary dominants.

Below is an illustration of the secondary-dominant chords for C major. Each chord is accompanied by its standard number in harmonic notation. In this notation, a secondary dominant is usually labeled with the formula "V of ..."; thus "V of ii" stands for the dominant of the ii chord, "V of iii" for the dominant of iii, and so on. A shorter notation, used below, is "V/ii", "V/iii", etc. The secondary dominants are connected with lines to their corresponding tonic chords.

Note that of the above, V/IV is the same as I. However, as will become clear shortly, they are significantly different.

Like most chords, secondary dominants can be classified by whether they contain certain additional notes outside the basic triad; for details, see Figured bass. A dominant seventh chord (notation: V7) is one that contains the note that is a minor seventh above the root, and a dominant-ninth chord (notation: V9) contains the note a ninth above the root. For instance, V7/IV, although it is a C chord, is distinct from regular C major because it also contains the note B flat, which is a minor seventh above the root of C, and not part of the C-major scale.

To illustrate, here are the secondary dominants of C major, given as dominant-seventh chords. They are shown leading into their respective tonics, as given in the second inversion.

no icon

Chromatic mediants, for example VI is also a secondary dominant of ii (V/ii) and III is V/vi, are distinguished from secondary dominants with context and analysis revealing the distinction.[6]

Normal sequencing or cadence

When used in music, a secondary dominant is very often (though not inevitably) directly followed by the chord of which it is the dominant. Thus V/ii is normally followed by ii, V/vi by vi, and so on. This is similar to the general pattern of music wherein the simple chord V is often followed by I. The tonic is said to "resolve" the slight dissonance created by the dominant. Indeed, the sequence V/X + X, where X is some basic chord, is thought of by some musicians as a tiny modulation, acting as a miniature dominant-tonic sequence in the key of X.

Secondary dominant in "I'd Like to Teach the World to Sing" (1971), mm. 1-8[7] About this sound Play  . Note that V/V (G7) resolves to V (C).


Secondary dominants in Beethoven's Symphony No. 1, introduction.[8] About this sound Play  

Before the 20th century, in music of Bach, Mozart, Beethoven, and Brahms, a secondary dominant, along with its chord of resolution, was considered to be a modulation. Since this was a rather self-contradictory description, theorists in the early 1900s, such as Hugo Riemann (who used the term "Zwischendominante"—"intermediary dominant", still the usual German term for a secondary dominant), searched for a better description of the phenomenon.

Walter Piston first used the analysis "V7 of IV" in a monograph entitled Principles of Harmonic Analysis.[9] (Notably, Piston's analytical symbol always used the word "of"—e.g. "V7 of IV" rather than the virgule "V7/IV.) In his 1941 book Harmony[10] Piston used the term "secondary dominant". At around the same time (1946–48), Arnold Schoenberg created the expression "artificial dominant" to describe the same phenomenon, in his posthumously published book Structural Functions of Harmony.[11]

Mozart example

In the Fifth edition of Harmony by Walter Piston and Mark DeVoto,[12] a passage from the last movement of Mozart's Piano Sonata K. 283 in G major serves as one illustration of secondary dominants. Below, the harmony alone is first given, labeled both for the literal names of the chords and for their chord number in the key of G major.

It can be seen that this passage has three secondary dominants, each one followed (as expected) by the chord of which it is the dominant. The final four bars form a back-cycle, ending in a standard dominant-tonic cadence, which concludes the phrase. The lines drawn below the diagram show each instance in which a dominant is followed by its corresponding tonic.

The harmony is distributed more subtly between the notes, and goes faster, in Mozart's original:

The secondary dominants here create a rapidly descending chromatic harmony, an effective approach to the tonic cadence at the end of the phrase. There are many similar passages in Mozart's music.

Use in jazz

Bop cliche arpeggio upwards from third to ninth: A79 (V/ii)[13] About this sound Play  .

In jazz harmony, a secondary dominant is any dominant chord (major-minor 7th chord) which occurs on a weak beat and resolves downward by a perfect fifth. Thus, a chord is a secondary dominant when it is functioning as the dominant of some harmonic element other than the key's tonic, and promptly resolves to that element. This is slightly different from the traditional use of the term, where a secondary dominant does not have to be a 7th chord, occur on a weak beat, or resolve downward. If a non-diatonic dominant chord is used on a strong beat, it is considered an extended dominant. If it doesn't resolve downward, it may be a borrowed chord.

Secondary dominants are used in jazz harmony in the bebop blues and other blues progression variations, as are substitute dominants and turnarounds.[13]

Popular music

Examples include II7 (V7/V) in  Play  

Extended dominant

Diatonic I-vi-ii-V turnaround in C[16] About this sound Play  .
Non-diatonic I-VI-II-V-I progression About this sound Play  .
Submediant in chain of fifths[17] About this sound Play  .

An extended dominant is a non-diatonic secondary-dominant seventh chord that resolves downwards to another dominant chord. A series of extended dominant chords continues to resolve downwards by perfect fifths until they reach the tonic chord.

Extended dominant relationship in Schubert's German Dance[17] About this sound Play  .

Though typically used in jazz, extended dominants have been used in other contexts as well.

See also

Further reading

  • Nettles, Barrie & Graf, Richard (1997). The Chord Scale Theory and Jazz Harmony. Advance Music, ISBN 3-89221-056-X
  • Thompson, David M. (1980). A History of Harmonic Theory in the United States. Kent, Ohio: The Kent State University Press.


  1. ^ Benward & Saker (2003). Music: In Theory and Practice, Vol. I, p.269. Seventh Edition. ISBN 978-0-07-294262-0.
  2. ^ Kostka, Stefan and Dorothy Payne (2003). Tonal Harmony, p.250. McGraw-Hill. ISBN 0-07-285260-7.
  3. ^ Beach, David and McClelland, Ryan C. (2012). Analysis of 18th- and 19th-century Musical Works in the Classical Tradition, p.32. Routledge. ISBN 9780415806657.
  4. ^ Wyatt, Keith; Schroeder, Carl; and Joe, Elliott (2005). Ear Training for the Contemporary Musician, p.87. Hal Leonard. ISBN 9780793581931.
  5. ^ Rawlins, Robert and Nor Eddine Bahha (2005). Jazzology: The Encyclopedia of Jazz Theory for All Musicians, p.59. ISBN 0-634-08678-2.
  6. ^ Benward & Saker (2003), p.201-204.
  7. ^ Benward & Saker (2003), p.277.
  8. ^ White, John D. (1976). The Analysis of Music, p.5. ISBN 0-13-033233-X.
  9. ^ Walter Piston, Principles of Harmonic Analysis (Boston: E. C. Schirmer, 1933).
  10. ^ Walter Piston, Harmony (New York: W. W. Norton & Company, Inc., 1941).
  11. ^ Arnold Schoenberg, Structural Functions of Harmony, edited by Humphrey Searle (New York: W. W. Norton & Company, Inc., 1954): 15–29, 197.
  12. ^ Walter Piston; Mark DeVoto (1987). Harmony (5th ed.). New York: Norton.  
  13. ^ a b Spitzer, Peter (2001). Jazz Theory Handbook, p.62. ISBN 0-7866-5328-0.
  14. ^ Everett, Walter (2009). The Foundations of Rock, p.198. ISBN 978-0-19-531023-8. Everett notates major-minor sevenths Xm7.
  15. ^ Shepherd, John (2003). Continuum Encyclopedia of Popular Music of the World: Volume II: Performance and Production, Volume 11, p.10. A&C Black. ISBN 9780826463227.
  16. ^ Boyd, Bill (1997). Jazz Chord Progressions, p.43. ISBN 0-7935-7038-7.
  17. ^ a b William G Andrews and Molly Sclater (2000). Materials of Western Music Part 1, p.226. ISBN 1-55122-034-2.

External links

  • Secondary dominant construction drill in Javascript
  • The Jazz Resource secondary dominant chords in jazz
  • Gary Ewer's free lesson on Secondary Dominants
  • The Music Theory ProfBlog "Is This a Secondary Function Chord?" flow chart
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.