World Library  
Flag as Inappropriate
Email this Article

Sound Wave

Article Id: WHEBN0002477227
Reproduction Date:

Title: Sound Wave  
Author: World Heritage Encyclopedia
Language: English
Subject: Once Upon a Time... The Discoverers
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Sound Wave

This article is about audible acoustic waves. For other uses, see Sound (disambiguation).


Sound is a mechanical wave that is an oscillation of pressure transmitted through some medium (like air or water), composed of frequencies which are within the range of hearing.[1]

Acoustics

Acoustics is the interdisciplinary science that deals with the study of all mechanical waves in gases, liquids, and solids including vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician while someone working in the field of acoustical engineering may be called an acoustic engineer. (Not to be confused with an audio engineer.) The application of acoustics can be seen in almost all aspects of modern society, subdisciplines include: aeroacoustics, audio signal processing, architectural acoustics, bioacoustics, electroacoustics, environmental noise, musical acoustics, noise control, psychoacoustics, speech, ultrasound, underwater acoustics and vibration.[2]

Physics of sound

Propagation of sound

Sound is a sequence of waves of pressure that propagates through compressible media such as air or water. (Sound can propagate through solids as well, but there are additional modes of propagation). Sound that is perceptible by humans has frequencies from about 20 Hz to 20,000 Hz. In air at standard temperature and pressure, the corresponding wavelengths of sound waves range from 17 m to 17 mm. During propagation, waves can be reflected, refracted, or attenuated by the medium.[3]

The behavior of sound propagation is generally affected by three things:

  • A relationship between density and pressure. This relationship, affected by temperature, determines the speed of sound within the medium.
  • The propagation is also affected by the motion of the medium itself. For example, sound moving through wind. Independent of the motion of sound through the medium, if the medium is moving, the sound is further transported.
  • The viscosity of the medium also affects the motion of sound waves. It determines the rate at which sound is attenuated. For many media, such as air or water, attenuation due to viscosity is negligible.

When sound is moving through a medium that does not have constant physical properties, it may be refracted (either dispersed or focused).[3]


The mechanical vibrations that can be interpreted as sound are able to travel through all forms of matter: gases, liquids, solids, and plasmas. The matter that supports the sound is called the medium. Sound cannot travel through a vacuum.

Longitudinal and transverse waves

Sound is transmitted through gases, plasma, and liquids as longitudinal waves, also called compression waves. Through solids, however, it can be transmitted as both longitudinal waves and transverse waves. Longitudinal sound waves are waves of alternating pressure deviations from the equilibrium pressure, causing local regions of compression and rarefaction, while transverse waves (in solids) are waves of alternating shear stress at right angle to the direction of propagation.

Matter in the medium is periodically displaced by a sound wave, and thus oscillates. The energy carried by the sound wave converts back and forth between the potential energy of the extra compression (in case of longitudinal waves) or lateral displacement strain (in case of transverse waves) of the matter and the kinetic energy of the oscillations of the medium.

Sound wave properties and characteristics

Sound waves are often simplified to a description in terms of sinusoidal plane waves, which are characterized by these generic properties:

Sometimes speed and direction are combined as a velocity vector; wavenumber and direction are combined as a wave vector.

Transverse waves, also known as shear waves, have the additional property, polarization, and are not a characteristic of sound waves.

Speed of sound

Main article: Speed of sound

The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. In general, the speed of sound is proportional to the square root of the ratio of the elastic modulus (stiffness) of the medium to its density. Those physical properties and the speed of sound change with ambient conditions. For example, the speed of sound in gases depends on temperature. In 20 °C (68 °F) air at sea level, the speed of sound is approximately 343 m/s (1,230 km/h; 767 mph) using the formula "v = (331 + 0.6 T) m/s". In fresh water, also at 20 °C, the speed of sound is approximately 1,482 m/s (5,335 km/h; 3,315 mph). In steel, the speed of sound is about 5,960 m/s (21,460 km/h; 13,330 mph).[6] The speed of sound is also slightly sensitive (a second-order anharmonic effect) to the sound amplitude, which means that there are nonlinear propagation effects, such as the production of harmonics and mixed tones not present in the original sound (see parametric array).

Perception of sound


The perception of sound in any organism is limited to a certain range of frequencies. For humans, hearing is normally limited to frequencies between about 20 Hz and 20,000 Hz (20 kHz),[7] although these limits are not definite. The upper limit generally decreases with age. Other species have a different range of hearing. For example, dogs can perceive vibrations higher than 20 kHz, but are deaf to anything below 40 Hz. As a signal perceived by one of the major senses, sound is used by many species for detecting danger, navigation, predation, and communication. Earth's atmosphere, water, and virtually any physical phenomenon, such as fire, rain, wind, surf, or earthquake, produces (and is characterized by) its unique sounds. Many species, such as frogs, birds, marine and terrestrial mammals, have also developed special organs to produce sound. In some species, these produce song and speech. Furthermore, humans have developed culture and technology (such as music, telephone and radio) that allows them to generate, record, transmit, and broadcast sound. The scientific study of human sound perception is known as psychoacoustics.

Noise

Main article: Noise

Noise is a term often used to refer to an unwanted sound. In science and engineering, noise is an undesirable component that obscures a wanted signal.

Sound pressure level

Main article: Sound pressure
Sound measurements
Sound pressure p, SPL
Particle velocity v, SVL
Particle displacement ξ
Sound intensity I, SIL
Sound power Pac
Sound power level SWL
Sound energy
Sound exposure E
Sound exposure level SEL
Sound energy density E
Sound energy flux q
Acoustic impedance Z
Speed of sound
Audio frequency AF

Sound pressure is the difference, in a given medium, between average local pressure and the pressure in the sound wave. A square of this difference (i.e., a square of the deviation from the equilibrium pressure) is usually averaged over time and/or space, and a square root of this average provides a root mean square (RMS) value. For example, 1 Pa RMS sound pressure (94 dBSPL) in atmospheric air implies that the actual pressure in the sound wave oscillates between (1 atm -\sqrt{2} Pa) and (1 atm +\sqrt{2} Pa), that is between 101323.6 and 101326.4 Pa. As the human ear can detect sounds with a wide range of amplitudes, sound pressure is often measured as a level on a logarithmic decibel scale. The sound pressure level (SPL) or Lp is defined as

L_\mathrm{p}=10\, \log_{10}\left(\frac^2}\right) =20\, \log_{10}\left(\frac{p}{p_\mathrm{ref}}\right)\mbox{ dB}\,

where p is the root-mean-square sound pressure and p_\mathrm{ref} is a reference sound pressure. Commonly used reference sound pressures, defined in the standard ANSI S1.1-1994, are 20 µPa in air and 1 µPa in water. Without a specified reference sound pressure, a value expressed in decibels cannot represent a sound pressure level.

Since the human ear does not have a flat spectral response, sound pressures are often frequency weighted so that the measured level matches perceived levels more closely. The International Electrotechnical Commission (IEC) has defined several weighting schemes. A-weighting attempts to match the response of the human ear to noise and A-weighted sound pressure levels are labeled dBA. C-weighting is used to measure peak levels.

Equipment for dealing with sound

Equipment for outputing or generating : musical instrument, sound box, hearing phones, sonar systems, sound reproduction, and broadcasting equipment. Many of these use electro-acoustic transducers for input : microphones .

Sound measurement

See also

References

External links

  • Sounds Amazing; a KS3/4 learning resource for sound and waves
  • HyperPhysics: Sound and Hearing
  • Introduction to the Physics of Sound
  • Hearing curves and on-line hearing test
  • Audio for the 21st Century
  • Conversion of sound units and levels
  • Sound calculations
  • Audio Check: a free collection of audio tests and test tones playable on-line
  • More Sounds Amazing; a sixth-form learning resource about sound waves

Template:Acoustics

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.