World Library  
Flag as Inappropriate
Email this Article

Tracker action

Article Id: WHEBN0001832860
Reproduction Date:

Title: Tracker action  
Author: World Heritage Encyclopedia
Language: English
Subject: WikiProject PipeOrgan/Article List, Electrophone, Direct electric action, Tracker, Pipe organ components
Collection:
Publisher: World Heritage Encyclopedia
Publication
Date:
 

Tracker action

Tracker action in Frobenius (2009)

Tracker action is a term used in reference to pipe(s) of the corresponding note. This is in contrast to "direct electric action" and "electro-pneumatic action", which connect the key to the valve through an electrical link or an electrically assisted pneumatic system respectively, or "tubular-pneumatic action" which utilizes a change of pressure within lead tubing which connects the key to the valve pneumatic.

Contents

  • History 1
    • Ancient history 1.1
    • Baroque and Classical 1.2
    • Romantic 1.3
    • Contemporary 1.4
  • Components of the action 2
  • Regulation 3
  • Kinds of action 4
  • Advantages and disadvantages of tracker action 5
    • Advantages 5.1
    • Disadvantages 5.2

History

Ancient history

hydraulic action of a hydraulophone, an instrument that actually uses water to produce the sound, not just as a source of power). While the control of air pressure was controlled by water pressure, hence the name, the action was a rudimentary form of modern action.

It was not until the mid 14th century that the action needed to be explored and expanded as finally more pipes were added, as well as the addition of stops, and ultimately multiple cases and keyboards.

Baroque and Classical

This continued in the 17th and 18th centuries. No particularly great developments took place in the Classical Period.

Romantic

In the pneumatically assisted action became the norm in large instruments, to offset the extreme key weight caused by high wind pressures.

Contemporary

Although tracker action was less utilized in the early twentieth century, particularly in England and America, its use has enjoyed a strong renaissance in the same areas since World War II, especially in instruments modeled on historical antecedents. Today, many builders are using tracker action throughout the world, and it has been successfully employed in organs of many styles. Some active builders of tracker action organs include Taylor and Boody of Staunton, Virginia, C. B. Fisk, Inc. of Gloucester, Massachusetts.

Currently, the world's Sydney Opera House, Sydney, Australia, and includes over 10,500 pipes.

Components of the action

A roller board with rollers and trackers from a 1970 D. A. Flentrop organ
Interior of the organ at Cradley Heath Baptist Church showing the tracker action. The rollers transmit movement sideways to line up with the pipes.

The action consists of many types of devices used for the playing of such said organ, as listed below:

  • Trackers – trackers are the portions of the action used to make a pulling motion. Trackers can be used over long distances. They are thin strips of wood, roughly 10 mm wide and 2 mm thick. Although flexible, at rest they hold their shape. Playing a note pulls on the end nearer to the keyboard, so they are in tension while the note is playing. The term comes from the Latin verb "trahere", to draw (in the sense of "pull"); cf. modern English tractor.
  • Stickers — used for a pushing motion; often paired with trackers. Their length is limited by the material, though most of the time, capping off at about 250 mm.
  • Levers — levers are used to transfer from a tracker (pulling) to a sticker (pushing), or a general change of direction, or both.
  • Backfalls — backfalls are used for motion over a small or short distance where trackers and stickers would be otherwise illogical to use. As a natural result, the motion also changes direction.
  • Squares — a specific type of lever commonly used in organs which is at a right angle. Squares can also come in a "T" shape and form.
  • Rollers — Wooden shafts that rotate. Used for parallel direction in vertical or horizontal motion. They have small levers on each end, like cranks.
  • Roller board — location upon which rollers are attached (Note: rollers are often used densely in one section of the action and so are often closely associated with the roller board.)
  • Stops — knobs that indirectly control the flow of air over certain ranks of pipes. They are activated with a pulling motion by hand, and deactivated (or stopped) by pushing them shut.
  • Trundle — Trundles are used as a substitute for levers in the action associated with the Stops and Slider boards.

The above is a list of mechanisms unique to tracker action. Steam calliopes, such as those built by Thomas J. Nichol in the early twentieth century, used a very simplified tracker mechanism. For actions used in all forms of pipe organs, see pipe organ construction.

Regulation

Tracker action at Cradley Heath Baptist Church showing adjusters on tracker ends which engage with the keys of the great organ.

Because of construction tolerances, a means of adjustment, or regulation, of the action has to be provided. This is commonly done by having a threaded wire end on the wooden tracker rods. A circular nut varies the effective length of the tracker where it engages with other parts of the action. One objective of correct regulation is that the keys on each manual have the same rest height and distance of travel when pressed. The regulation wrongly set at one extreme can cause a note to sound when no keys are pressed. This may also be caused by the action sticking after the key is released. The other extreme is that notes do not sound, or sound feebly, when a key is pressed.

Kinds of action

Besides tracker action, two other kinds of action used in pipe organs are as follows:

  • Electric action in which electric valves are used to allow wind into the pipes
  • Pneumatic action in which compressed air is used to control valves that allow wind into the pipes

Advantages and disadvantages of tracker action

Currently, some organ builders use tracker action in new organs, others use electric action, and still others use either type depending on the instrument. There are builders and organists who have strong feelings regarding the advantages of one type of action over another.

Advantages

  • Tracker action gives the organist more precise control over the exact moment air enters the pipe.
  • This control affects the attack and release of a note through different touch. Before the invention of electric action, the organ was a touch-sensitive instrument.

Disadvantages

  • The console or keydesk (where the organist actually plays) cannot be moved.
  • On some instruments, as more stops are used, the organist must apply more pressure/force to a key in order for it to play, resulting in heavy playing action when playing full organ. This can be particularly burdensome when two or more manuals are coupled. Problems of heavy action can almost always be overcome through correct use of body weight. The invention of the Barker lever was also meant to counteract this problem, by providing a pneumatic assist while retaining a completely-mechanical action.
This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and USA.gov, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for USA.gov and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
 
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
 
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.
 


Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.