World Library  
Flag as Inappropriate
Email this Article

Two-body problem

Article Id: WHEBN0000277468
Reproduction Date:

Title: Two-body problem  
Author: World Heritage Encyclopedia
Language: English
Subject: Laplace–Runge–Lenz vector, Kepler orbit, N-body problem, Star system, Orbit-Vis
Collection: Classical Mechanics, Concepts in Physics, Orbits
Publisher: World Heritage Encyclopedia

Two-body problem

Two bodies with similar mass orbiting around a common barycenter with elliptic orbits (left). Two bodies with a slight difference in mass orbiting around a common barycenter. The sizes, and this particular type of orbit are similar to the PlutoCharon system and also to Earth–Moon system in which the center of mass is inside the bigger body instead (right).

In classical mechanics, the two-body problem is to determine the motion of two point particles that interact only with each other. Common examples include a satellite orbiting a planet, a planet orbiting a star, two stars orbiting each other (a binary star), and a classical electron orbiting an atomic nucleus (although to solve the electron/nucleus 2-body system correctly a quantum mechanical approach must be used).

The two-body problem can be re-formulated as two one-body problems, a trivial one and one that involves solving for the motion of one particle in an external potential. Since many one-body problems can be solved exactly, the corresponding two-body problem can also be solved. By contrast, the three-body problem (and, more generally, the n-body problem for n ≥ 3) cannot be solved in terms of first integrals, except in special cases.


  • Reduction to two independent, one-body problems 1
    • Center of mass motion (1st one-body problem) 1.1
  • Two-body motion is planar 2
  • Laws of Conservation of Energy for each of two bodies for arbitrary potentials 3
  • Central forces 4
  • Work 5
  • See also 6
  • References 7
  • Bibliography 8
  • External links 9

Reduction to two independent, one-body problems

Jacobi coordinates for two-body problem; Jacobi coordinates are \boldsymbol{R}=\frac {m_1}{M} \boldsymbol{x}_1 + \frac {m_2}{M} \boldsymbol{x}_2 and \boldsymbol{r} = \boldsymbol{x}_1 - \boldsymbol{x}_2 with M = m_1+m_2 \ .[1]

Let x1 and x2 be the vector positions of the two bodies, and m1 and m2 be their masses. The goal is to determine the trajectories x1(t) and x2(t) for all times t, given the initial positions x1(t = 0) and x2(t = 0) and the initial velocities v1(t = 0) and v2(t = 0).

When applied to the two masses, Newton's second law states that

\mathbf{F}_{12}(\mathbf{x}_{1},\mathbf{x}_{2}) = m_{1} \ddot{\mathbf{x}}_{1} \quad \quad \quad (\mathrm{Equation} \ 1)
\mathbf{F}_{21}(\mathbf{x}_{1},\mathbf{x}_{2}) = m_{2} \ddot{\mathbf{x}}_{2} \quad \quad \quad (\mathrm{Equation} \ 2)

where F12 is the force on mass 1 due to its interactions with mass 2, and F21 is the force on mass 2 due to its interactions with mass 1. The two dots on top of the x position vectors denote their second derivative, or their acceleration vectors.

Adding and subtracting these two equations decouples them into two one-body problems, which can be solved independently. Adding equations (1) and (2) results in an equation describing the center of mass (barycenter) motion. By contrast, subtracting equation (2) from equation (1) results in an equation that describes how the vector r = x1 − x2 between the masses changes with time. The solutions of these independent one-body problems can be combined to obtain the solutions for the trajectories x1(t) and x2(t).

Center of mass motion (1st one-body problem)

Addition of the force equations (1) and (2) yields

m_{1}\ddot{\mathbf{x}}_1 + m_2 \ddot{\mathbf{x}}_2 = (m_1 + m_2)\ddot{\mathbf{R}} = \mathbf{F}_{12} + \mathbf{F}_{21} = 0

where we have used Newton's third law F12 = −F21 and where

\ddot{\mathbf{R}} \equiv \frac{m_{1}\ddot{\mathbf{x}}_{1} + m_{2}\ddot{\mathbf{x}}_{2}}{m_{1} + m_{2}}
\mathbf{R} is the position of the center of mass (barycenter) of the system.

The resulting equation:

\ddot{\mathbf{R}} = 0

shows that the velocity V = dR/dt of the center of mass is constant, from which follows that the total momentum m1 v1 + m2 v2 is also constant (conservation of momentum). Hence, the position R (t) of the center of mass can be determined at all times from the initial positions and velocities.

Two-body motion is planar

The motion of two bodies with respect to each other always lies in a plane (in the center of mass frame). Defining the linear momentum p and the angular momentum L by the equations (where μ is the reduced mass)

\mathbf{L} = \mathbf{r} \times \mathbf{p} = \mathbf{r} \times \mu \frac{d\mathbf{r}}{dt}

the rate of change of the angular momentum L equals the net torque N

\mathbf{N} = \frac{d\mathbf{L}}{dt} = \dot{\mathbf{r}} \times \mu\dot{\mathbf{r}} + \mathbf{r} \times \mu\ddot{\mathbf{r}} \ ,

and using the property of the vector cross product that v × w = 0 for any vectors v and w pointing in the same direction,

\mathbf{N} \ = \ \frac{d\mathbf{L}}{dt} = \mathbf{r} \times \mathbf{F} \ ,

with F = μ d 2r / dt 2.

Introducing the assumption (true of most physical forces, as they obey Newton's strong third law of motion) that the force between two particles acts along the line between their positions, it follows that r × F =  0 and the angular momentum vector L is constant (conserved). Therefore, the displacement vector r and its velocity v are always in the plane perpendicular to the constant vector L.

Laws of Conservation of Energy for each of two bodies for arbitrary potentials

In system of the center of mass for arbitrary potentials

~U_{12} = U(\mathbf{r}_1 - \mathbf{r}_2)
~U_{21} = U(\mathbf{r}_2 - \mathbf{r}_1)

the value of energies of bodies do not change:

~E_1 = m_1 \frac{v_1^2}{2} + \frac{m_2} {m_1+m_2} U_{12} = \text{Const}_1(t)
~E_2 = m_2 \frac{v_2^2}{2} + \frac{m_1} {m_1+m_2} U_{21} = \text{Const}_2(t)

Central forces

For many physical problems, the force F(r) is a central force, i.e., it is of the form

\mathbf{F}(\mathbf{r}) = F(r)\hat{\mathbf{r}}

where r = |r| and = r/r is the corresponding unit vector. We now have:

\mu \ddot{\mathbf{r}} = {F}(r) \hat{\mathbf{r}} \ ,

where F(r) is negative in the case of an attractive force.


The total work done in a given time interval by the forces exerted by two bodies on each other is the same as the work done by one force applied to the total relative displacement.

See also


  1. ^ David Betounes (2001). Differential Equations. Springer. p. 58; Figure 2.15.  



External links

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.