World Library  
Flag as Inappropriate
Email this Article


Article Id: WHEBN0000195120
Reproduction Date:

Title: Uncountable  
Author: World Heritage Encyclopedia
Language: English
Subject: Hadwiger number, List of paradoxes
Publisher: World Heritage Encyclopedia


"Uncountable" redirects here. For the linguistic concept, see Uncountable noun.

In mathematics, an uncountable set is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger than that of the set of all natural numbers.


There are many equivalent characterizations of uncountability. A set X is uncountable if and only if any of the following conditions holds:

  • There is no injective function from X to the set of natural numbers.
  • X is nonempty and every ω-sequence of elements of X fails to include at least one element of X. That is, X is nonempty and there is no surjective function from the natural numbers to X.
  • The cardinality of X is neither finite nor equal to \aleph_0 (aleph-null, the cardinality of the natural numbers).
  • The set X has cardinality strictly greater than \aleph_0.

The first three of these characterizations can be proven equivalent in Zermelo–Fraenkel set theory without the axiom of choice, but the equivalence of the third and fourth cannot be proved without additional choice principles.


  • If an uncountable set X is a subset of set Y, then Y is uncountable.


The best known example of an uncountable set is the set R of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers and the set of all subsets of the set of natural numbers. The cardinality of R is often called the cardinality of the continuum and denoted by c, or 2^{\aleph_0}, or \beth_1 (beth-one).

The Cantor set is an uncountable subset of R. The Cantor set is a fractal and has Hausdorff dimension greater than zero but less than one (R has dimension one). This is an example of the following fact: any subset of R of Hausdorff dimension strictly greater than zero must be uncountable.

Another example of an uncountable set is the set of all functions from R to R. This set is even "more uncountable" than R in the sense that the cardinality of this set is \beth_2 (beth-two), which is larger than \beth_1.

A more abstract example of an uncountable set is the set of all countable ordinal numbers, denoted by Ω or ω1. The cardinality of Ω is denoted \aleph_1 (aleph-one). It can be shown, using the axiom of choice, that \aleph_1 is the smallest uncountable cardinal number. Thus either \beth_1, the cardinality of the reals, is equal to \aleph_1 or it is strictly larger. Georg Cantor was the first to propose the question of whether \beth_1 is equal to \aleph_1. In 1900, David Hilbert posed this question as the first of his 23 problems. The statement that \aleph_1 = \beth_1 is now called the continuum hypothesis and is known to be independent of the Zermelo–Fraenkel axioms for set theory (including the axiom of choice).

Without the axiom of choice

Without the axiom of choice, there might exist cardinalities incomparable to \aleph_0 (namely, the cardinalities of Dedekind-finite infinite sets). Sets of these cardinalities satisfy the first three characterizations above but not the fourth characterization. Because these sets are not larger than the natural numbers in the sense of cardinality, some may not want to call them uncountable.

If the axiom of choice holds, the following conditions on a cardinal \kappa\! are equivalent:

  • \kappa \nleq \aleph_0;
  • \kappa > \aleph_0; and
  • \kappa \geq \aleph_1, where \aleph_1 = |\omega_1 | and \omega_1\, is least initial ordinal greater than \omega.\!

However, these may all be different if the axiom of choice fails. So it is not obvious which one is the appropriate generalization of "uncountability" when the axiom fails. It may be best to avoid using the word in this case and specify which of these one means.

See also


External links

  • is uncountable

Template:Set theoryru:Счётное множество#Связанные понятия

This article was sourced from Creative Commons Attribution-ShareAlike License; additional terms may apply. World Heritage Encyclopedia content is assembled from numerous content providers, Open Access Publishing, and in compliance with The Fair Access to Science and Technology Research Act (FASTR), Wikimedia Foundation, Inc., Public Library of Science, The Encyclopedia of Life, Open Book Publishers (OBP), PubMed, U.S. National Library of Medicine, National Center for Biotechnology Information, U.S. National Library of Medicine, National Institutes of Health (NIH), U.S. Department of Health & Human Services, and, which sources content from all federal, state, local, tribal, and territorial government publication portals (.gov, .mil, .edu). Funding for and content contributors is made possible from the U.S. Congress, E-Government Act of 2002.
Crowd sourced content that is contributed to World Heritage Encyclopedia is peer reviewed and edited by our editorial staff to ensure quality scholarly research articles.
By using this site, you agree to the Terms of Use and Privacy Policy. World Heritage Encyclopedia™ is a registered trademark of the World Public Library Association, a non-profit organization.

Copyright © World Library Foundation. All rights reserved. eBooks from Project Gutenberg are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.